- 数据中台(二)数据中台相关技术栈
Yuan_CSDF
#数据中台
1.平台搭建1.1.Amabari+HDP1.2.CM+CDH2.相关的技术栈数据存储:HDFS,HBase,Kudu等数据计算:MapReduce,Spark,Flink交互式查询:Impala,Presto在线实时分析:ClickHouse,Kylin,Doris,Druid,Kudu等资源调度:YARN,Mesos,Kubernetes任务调度:Oozie,Azakaban,AirFlow,
- Hadoop相关面试题
努力的搬砖人.
java面试hadoop
以下是150道Hadoop面试题及其详细回答,涵盖了Hadoop的基础知识、HDFS、MapReduce、YARN、HBase、Hive、Sqoop、Flume、ZooKeeper等多个方面,每道题目都尽量详细且简单易懂:Hadoop基础概念类1.什么是Hadoop?Hadoop是一个由Apache基金会开发的开源分布式计算框架,主要用于处理和存储大规模数据集。它提供了高容错性和高扩展性的分布式存
- 中电金信25/3/18面前笔试(需求分析岗+数据开发岗)
苍曦
需求分析前端javascript
部分相同题目在第二次数据开发岗中不做解析,本次解析来源于豆包AI,正确与否有待商榷,本文只提供一个速查与知识点的补充。一、需求分析第1题,单选题,Hadoop的核心组件包括HDFS和以下哪个?MapReduceSparkStormFlink解析:Hadoop的核心组件是HDFS(分布式文件系统)和MapReduce(分布式计算框架)。Spark、Storm、Flink虽然也是大数据处理相关技术,但
- Hadoop MapReduce 词频统计(WordCount)代码解析教程
我不是少爷.
Java基础hadoopmapreduce大数据
一、概述这是一个基于HadoopMapReduce框架实现的经典词频统计程序。程序会统计输入文本中每个单词出现的次数,并将结果输出到HDFS文件系统。二、代码结构packagecom.bigdata.wc;//Hadoop核心类库导入importorg.apache.hadoop.conf.Configuration;importorg.apache.hadoop.fs.Path;//数据类型定义
- 介绍 Apache Spark 的基本概念和在大数据分析中的应用
佛渡红尘
apache
ApacheSpark是一个开源的集群计算框架,最初由加州大学伯克利分校的AMPLab开发,用于大规模数据处理和分析。相比于传统的MapReduce框架,Spark具有更快的数据处理速度和更强大的计算能力。ApacheSpark的基本概念包括:弹性分布式数据集(RDD):是Spark中基本的数据抽象,是一个可并行操作的分区记录集合。RDD可以在集群中的节点间进行分布式计算。转换(Transform
- 基于MapReduce的气候数据分析
赵谨言
论文毕业设计经验分享
标题:基于MapReduce的气候数据分析内容:1.摘要本文聚焦于基于MapReduce的气候数据分析。背景在于随着全球气候变化问题日益严峻,海量气候数据的高效处理和分析成为关键。目的是利用MapReduce技术对气候数据进行有效挖掘,以揭示气候变化规律和趋势。方法上,采用MapReduce编程模型对大规模气候数据进行分布式处理,通过数据的映射和归约操作实现并行计算。结果表明,运用该技术能显著提高
- 场景题:100G的文件里有很多id,用1G内存的机器排序,怎么做?
海量数据排序思路核心方案:外排序(分治+多路归并)MapReduce外排序是指数据量太大,无法全部加载到内存中,需要将数据分成多个小块进行排序,然后将排序后的小块合并成一个大的有序块1.分块排序(Map阶段)分块策略按1G内存容量限制,将100G文件拆分为200个500MB分块(保留内存用于排序计算和系统开销)内存排序每个分块加载至内存后:①使用快速排序(时间复杂度O(nlogn))②去重优化:若
- 上万个Map运行时链接ApplicationMaster超时FAILED
500佰
大数据云计算bigdatamapreduce
#MapReduce业务常见故障#大数据#生产环境真实案例#MapReduce#批计算#离线业务#整理#经验总结说明:此篇总结MapReduce业务常见故障案例处理方案结合自身经历总结不易+关注+收藏欢迎留言更多专题(详见):MapReduce计算引擎详解--项目优化(指导书)上万个Map运行时链接ApplicationMaster超时FAILED症状Mapreduce任务会并发起几万个map,会
- hive 数字转换字符串_Hive架构及Hive SQL的执行流程解读
weixin_39756416
hive数字转换字符串
1、Hive产生背景MapReduce编程的不便性HDFS上的文件缺少Schema(表名,名称,ID等,为数据库对象的集合)2、Hive是什么Hive的使用场景是什么?基于Hadoop做一些数据清洗啊(ETL)、报表啊、数据分析可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。Hive是SQL解析引擎,它将SQL语句转译成M/RJob然后在Hadoop执行。由Facebook开源,
- mySQL和Hive的区别
iijik55
面试学习路线阿里巴巴hivemysql大数据tomcat面试
SQL和HQL的区别整体1、存储位置:Hive在Hadoop上;Mysql将数据存储在设备或本地系统中;2、数据更新:Hive不支持数据的改写和添加,是在加载的时候就已经确定好了;数据库可以CRUD;3、索引:Hive无索引,每次扫描所有数据,底层是MR,并行计算,适用于大数据量;MySQL有索引,适合在线查询数据;4、执行:Hive底层是MapReduce;MySQL底层是执行引擎;5、可扩展性
- Hadoop、Spark和 Hive 的详细关系
夜行容忍
hadoopsparkhive
Hadoop、Spark和Hive的详细关系1.ApacheHadoopHadoop是一个开源框架,用于分布式存储和处理大规模数据集。核心组件:HDFS(HadoopDistributedFileSystem):分布式文件系统,提供高吞吐量的数据访问。YARN(YetAnotherResourceNegotiator):集群资源管理和作业调度系统。MapReduce:基于YARN的并行处理框架,用
- 大数据面试之路 (一) 数据倾斜
愿与狸花过一生
大数据面试职场和发展
记录大数据面试历程数据倾斜大数据岗位,数据倾斜面试必问的一个问题。一、数据倾斜的表现与原因表现某个或某几个Task执行时间过长,其他Task快速完成。Spark/MapReduce作业卡在某个阶段(如reduce阶段),日志显示少数Task处理大量数据。资源利用率不均衡(如CPU、内存集中在某些节点)。常见场景Key分布不均:如某些Key对应的数据量极大(如用户ID为空的记录、热点事件)。数据分区
- Hadoop的运行模式
对许
#Hadoophadoop大数据分布式
Hadoop的运行模式1、本地运行模式2、伪分布式运行模式3、完全分布式运行模式4、区别与总结Hadoop有三种可以运行的模式:本地运行模式、伪分布式运行模式和完全分布式运行模式1、本地运行模式本地运行模式无需任何守护进程,单机运行,所有的程序都运行在同一个JVM上执行Hadoop安装后默认为本地模式,数据存储在Linux本地。在本地模式下调试MapReduce程序非常高效方便,一般该模式主要是在
- Hadoop的mapreduce的执行过程
画纸仁
大数据hadoopmapreduce大数据
一、map阶段的执行过程第一阶段:把输入目录下文件按照一定的标准逐个进行逻辑切片,形成切片规划。默认Splitsize=Blocksize(128M),每一个切片由一个MapTask处理。(getSplits)第二阶段:对切片中的数据按照一定的规则读取解析返回对。默认是按行读取数据。key是每一行的起始位置偏移量,value是本行的文本内容。(TextInputFormat)第三阶段:调用Mapp
- Hadoop:分布式计算平台初探
dccrtbn6261333
大数据运维java
Hadoop是一个开发和运行处理大规模数据的软件平台,是Apache的一个用java语言实现开源软件框架,实现在大量计算机组成的集群中对海量数据进行分布式计算。Hadoop框架中最核心设计就是:MapReduce和HDFS。MapReduce提供了对数据的计算,HDFS提供了海量数据的存储。MapReduceMapReduce的思想是由Google的一篇论文所提及而被广为流传的,简单的一句话解释M
- 探秘开源项目 MapReduce:分布式计算的新篇章
褚知茉Jade
探秘开源项目MapReduce:分布式计算的新篇章去发现同类优质开源项目:https://gitcode.com/在大数据处理领域,一个名字始终熠熠生辉,那就是。这是一个由Google提出的并被广泛应用的编程模型,用于大规模数据集的并行计算。本文将带你深入了解这一开源实现的魅力,分析其技术原理,探讨它的应用场景,并揭示它独特的特性。项目简介该项目是ChubbyJiang对原始GoogleMapRe
- MapReduce:分布式并行编程的基石
JAZJD
mapreduce分布式大数据
目录概述分布式并行编程分布式并行编程模型分布式并行编程框架MapReduce模型简介Map和Reduce函数Map函数Map函数的输入和输出Map函数的常见操作Reduce函数Reduce函数的输入和输出Reduce函数的常见操作工作流程概述各个阶段1.输入分片2.Map阶段3.Shuffle阶段4.Reduce阶段MapReduce工作流程总结Shuffle过程详解1.分区(Partitioni
- MapReduce:分布式计算的基石
Earth explosion
mapreduce大数据
MapReduce是一种用于处理和生成大数据集的编程模型,以及一个用于执行该模型的关联实现。它使得在大型商用硬件集群(数千台机器)上进行并行处理海量数据成为可能。本文将深入探讨MapReduce的核心概念、工作原理、应用场景以及一些高级主题。核心概念:分而治之MapReduce的核心思想是“分而治之”。它将复杂的计算任务分解成两个主要阶段:Map阶段和Reduce阶段。Map阶段:输入数据被分割成
- 【Hadoop】如何理解MapReduce?
2302_79952574
hadoopmapreduce数据库
MapReduce是一种用于处理大规模数据集的编程模型和计算框架。它的核心思想是将复杂的计算任务分解为两个简单的阶段:Map(映射)和Reduce(归约)。通过这种方式,MapReduce可以高效地并行处理海量数据。一.MapReduce的核心概念1.Map(映射):将输入数据分割成小块,并对每个小块进行初步处理。输出键值对(key-valuepairs),例如。2.Shuffle和Sort(洗牌
- Hadoop介绍:什么是Hadoop?了解Hadoop的应用
Zzzxt007
hadoop大数据分布式
一、认识Hadoop框架Hadoop是一个提供分布式存储和计算的开源软件框架,使用Java语言编写,具有高扩展性、高容错性、无共享和高可用(HA)等特点,非常适合处理海量数据。它基于Google发布的MapReduce论文实现,并且应用了函数式编程的思想。Hadoop框架主要包括HDFS(HadoopDistributedFileSystem,Hadoop分布式文件系统)、MapReduce、YA
- 【Hadoop】详解HDFS
2302_79952574
hadoophdfs大数据
Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件上的分布式文件系统,它是一个高度容错性的系统,适合部署在廉价的机器上,能够提供高吞吐量的数据访问,非常适合大规模数据集上的应用。为了做到可靠性,HDFS创建了多份数据块的副本,并将它们放置在服务器群的计算节点中,MapReduce可以在它们所在的节点上处理这些数据。1.HDFS的设计目标存储大规模数据:HDFS可以存储并管理PB级甚至
- hadoop框架与核心组件刨析(四)MapReduce
小刘爱喇石( ˝ᗢ̈˝ )
hadoopmapreduce大数据
MapReduce是一种用于大规模数据处理的编程模型和计算框架,最初由Google提出,后来由ApacheHadoop实现并广泛应用。它的核心思想是将数据处理任务分解为两个阶段:Map和Reduce,并通过分布式计算并行处理海量数据。MapReduce的核心思想分而治之:将大规模数据集分割成多个小块,分布到集群中的多个节点上并行处理。Map阶段:将输入数据转换为键值对(Key-ValuePair)
- hadoop运行java程序命令_使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0
emi0wb
网上的MapReduceWordCount教程对于如何编译WordCount.java几乎是一笔带过…而有写到的,大多又是0.20等旧版本版本的做法,即javac-classpath/usr/local/hadoop/hadoop-1.0.1/hadoop-core-1.0.1.jarWordCount.java,但较新的2.X版本中,已经没有hadoop-core*.jar这个文件,因此编辑和打
- 大数据Hadoop集群运行程序
赵广陆
hadoophadoopbigdatamapreduce
目录1运行自带的MapReduce程序2常见错误1运行自带的MapReduce程序下面我们在Hadoop集群上运行一个MapReduce程序,以帮助读者对分布式计算有个基本印象。在安装Hadoop时,系统给用户提供了一些MapReduce示例程序,其中有一个典型的用于计算圆周率的Java程序包,现在运行该程序。该jar包文件的位置和文件名是“~/hadoop-3.1.0/share/Hadoop/
- 大数据面试系列之——Hadoop
潜心_守道
大数据面经面试大数据Hadoop
Hadoop的三个核心:HDFS(分布式存储系统)MapReduce(分布式计算系统)YARN(分布式资源调度)1.Hadoop集群的几种搭建模式1.单机模式:直接解压安装,不存在分布式存储系统2.伪分布式:NameNode和DataNode安装于同一个节点,无法体现分布式处理的优势。3.完全分布式:一个主节点,多个从节点,存在如果主节点宕机,集群就无法使用的缺点。4.高可用模式:多个主节点,多个
- hadoop
百里自来卷
hadoop大数据分布式
Hadoop是一个用于分布式存储和处理大规模数据的开源框架,它的架构主要由以下几个核心组件组成:1.Hadoop生态系统核心组件Hadoop的核心架构主要包括HDFS(HadoopDistributedFileSystem)和YARN(YetAnotherResourceNegotiator),以及MapReduce计算框架:1.1HDFS(分布式文件系统)HDFS负责存储大规模数据,采用主从架构
- 第一个Hadoop程序
lqlj2233
hadoop大数据分布式
编写和运行第一个Hadoop程序是学习Hadoop的重要步骤。以下是一个经典的“WordCount”程序示例,它统计文本文件中每个单词出现的次数。我们将使用Java编写MapReduce程序,并在Hadoop集群上运行它。一、WordCount程序概述WordCount是Hadoop的“HelloWorld”程序。它的基本逻辑如下:Mapper:读取输入文件,将每一行文本拆分为单词,并输出每个单词
- 【自学笔记】Hadoop基础知识点总览-持续更新
Long_poem
笔记hadoop大数据
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录Hadoop基础知识点总览1.Hadoop简介2.Hadoop生态系统3.HDFS(HadoopDistributedFileSystem)HDFS基本命令4.MapReduceWordCount示例(Java)5.YARN(YetAnotherResourceNegotiator)6.其他组件简介总结Hadoop基础知识点总
- Spark是什么?可以用来做什么?
Bugkillers
大数据spark大数据分布式
ApacheSpark是一个开源的分布式计算框架,专为处理大规模数据而设计。它最初由加州大学伯克利分校开发,现已成为大数据处理领域的核心工具之一。相比传统的HadoopMapReduce,Spark在速度、易用性和功能多样性上具有显著优势。一、Spark的核心特点速度快:基于内存计算(In-MemoryProcessing),比基于磁盘的MapReduce快10~100倍。支持高效的DAG(有向无
- 大数据面试临阵磨枪不知看什么?看这份心理就有底了-大数据常用技术栈常见面试100道题
大模型大数据攻城狮
大数据面试职场和发展面试题数据仓库算法
目录1描述Hadoop的架构和它的主要组件。2MapReduce的工作原理是什么?3什么是YARN,它在Hadoop中扮演什么角色?4Spark和HadoopMapReduce的区别是什么?5如何在Spark中实现数据的持久化?6SparkStreaming的工作原理是什么?7如何优化Spark作业的性能?8描述HBase的架构和它的主要组件。9HBase的读写流程是怎样的?10HBase如何处理
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在