Open-falcon transfer源码解读

transfer可以理解为中转模块,它接收agent上报的指标,然后转发给后端的graph和judge实例。

transfer接收到agent上报的指标后,先存储到内存queue,然后再由goroutine默默的将queue的数据Pop出来,转发给graph和judge。

transfer后端接多个graph和judge实例,如何保证某一个指标稳定的转发到某个实例,同时还能保证多个graph间保持均衡,不会出现某个graph承担过多的指标而产生数据倾斜?transfer使用了一致性hash算法来做到这一点。

整体架构:
Open-falcon transfer源码解读_第1张图片

1. transfer接收agent上报的指标数据

transfer通过TCP RPC接收agent的数据:

// modules/transfer/receiver/rpc/rpc.go
func StartRpc() {
    listener, err := net.ListenTCP("tcp", tcpAddr)
    server := rpc.NewServer()
    server.Register(new(Transfer))
    for {
        conn, err := listener.AcceptTCP()
        go server.ServeCodec(jsonrpc.NewServerCodec(conn))
    }
}

transfer的RPC方法:Transfer.Update,负责接收数据

//modules/transfer/receiver/rpc/rpc_transfer.go
type Transfer int
func (t *Transfer) Update(args []*cmodel.MetricValue, reply *cmodel.TransferResponse) error {
    return RecvMetricValues(args, reply, "rpc")
}
func RecvMetricValues(args []*cmodel.MetricValue, reply *cmodel.TransferResponse, from string) error {
    items := []*cmodel.MetaData{}
    for _, v := range args {
        fv := &cmodel.MetaData{
            Metric:      v.Metric,
            Endpoint:    v.Endpoint,
            Timestamp:   v.Timestamp,
            Step:        v.Step,
            CounterType: v.Type,
            Tags:        cutils.DictedTagstring(v.Tags), 
        }
        .......
        items = append(items, fv)
    }
    if cfg.Graph.Enabled {
        sender.Push2GraphSendQueue(items)
    }
    if cfg.Judge.Enabled {
        sender.Push2JudgeSendQueue(items)
    }
}

可以看到,transfer直接将items放入graph/judge中的Queue就返回了,并不会直接发送;这样做有以下好处:

  • 更快的响应agent;
  • 把零散的数据做成恒定大小的批次,再发送给后端,减轻对后端实例的冲击;
  • 将数据缓存以后,可以从容的处理发送超时等异常情况;

以graph为例,分析如何确定某个item放入那个graph Queue:

// modules/transfer/sender/sender.go
func Push2GraphSendQueue(items []*cmodel.MetaData) {
    for _, item := range items {
        pk := item.PK()
        //根据item的key确定放入那个graph Queue
        node, err := GraphNodeRing.GetNode(pk)
        
        //将数据Push进queue
        for _, addr := range cnode.Addrs {
            Q := GraphQueues[node+addr]
            if !Q.PushFront(graphItem) {
                errCnt += 1
            }
        }
    }
}

可以看出,根据item的key确定graphQueue,而key是将endpoint/metric/tags信息拼成了一个字符串:

func (t *MetaData) PK() string {
    return MUtils.PK(t.Endpoint, t.Metric, t.Tags)
}
func PK(endpoint, metric string, tags map[string]string) string {
    ret := bufferPool.Get().(*bytes.Buffer)
    ret.Reset()
    defer bufferPool.Put(ret)

    if tags == nil || len(tags) == 0 {
        ret.WriteString(endpoint)
        ret.WriteString("/")
        ret.WriteString(metric)

        return ret.String()
    }
    ret.WriteString(endpoint)
    ret.WriteString("/")
    ret.WriteString(metric)
    ret.WriteString("/")
    ret.WriteString(SortedTags(tags))
    return ret.String()
}

2. 一致性hash保证graph/judge间的数据均衡

itemKey是个string,如何确定将该item放入哪个graphQueue呢?

答案是一致性hash算法,根据itemKey通过一致性hash确定一个node,然后每个node对应1个graphQueue。

这里重点关注一致性hash如何使用:

//根据pk选择node
node, err := GraphNodeRing.GetNode(pk)`

//创建Graph节点的hash环
GraphNodeRing = rings.NewConsistentHashNodesRing(int32(cfg.Graph.Replicas), cutils.KeysOfMap(cfg.Graph.Cluster))

使用graph节点创建graph节点的hash环,每个节点有replica个虚拟节点,以保证数据均衡;

这里的一致性hash使用了github.com/toolkits/consistent/rings的开源实现:

//创建hash环
func NewConsistentHashNodesRing(numberOfReplicas int32, nodes []string) *ConsistentHashNodeRing {
    ret := &ConsistentHashNodeRing{ring: consistent.New()}
    ret.SetNumberOfReplicas(numberOfReplicas)
    ret.SetNodes(nodes)
    return ret
}
// 根据pk,获取node节点. chash(pk) -> node
func (this *ConsistentHashNodeRing) GetNode(pk string) (string, error) {
    return this.ring.Get(pk)
}

item选到node以后,就被push到该node对应的graphQueue,最后graphQueue的数据被RPC发送给graph节点:

GraphQueues  = make(map[string]*nlist.SafeListLimited)

Q := GraphQueues[node+addr]
if !Q.PushFront(graphItem) {
    errCnt += 1
}

其中nlist.SafeListLimited是用list封装的一个queue结构:

// SafeList with Limited Size
type SafeListLimited struct {
    maxSize int
    SL      *SafeList
}

type SafeList struct {
    sync.RWMutex
    L *list.List
}

3. queue中的数据转发给graph/judge

每个graph节点对应一个graphQueue,需要被TCP RPC发送给graph节点,这由后台的goroutine来执行的:

// modules/transfer/sender/send_tasks.go
func startSendTasks() {
    ......
    for node, nitem := range cfg.Graph.ClusterList {
        for _, addr := range nitem.Addrs {
            queue := GraphQueues[node+addr]
            go forward2GraphTask(queue, node, addr, graphConcurrent)
        }
    }
    ......
}

func forward2GraphTask(Q *list.SafeListLimited, node string, addr string, concurrent int) {
    batch := g.Config().Graph.Batch 
    sema := nsema.NewSemaphore(concurrent)
    for {
        items := Q.PopBackBy(batch)
        count := len(items)
        if count == 0 {
            time.Sleep(DefaultSendTaskSleepInterval)
            continue
        }
        sema.Acquire()
        go func(addr string, graphItems []*cmodel.GraphItem, count int) {
            defer sema.Release()
            err = GraphConnPools.Call(addr, "Graph.Send", graphItems, resp)
        }(addr, graphItems, count)
    }    
}

每个graph节点启动1个goroutine进行发送;发送过程中,每来一个batch就启动1个goroutine进行发送,为控制发送的goroutine数量,使用semaphore(channel实现)控制并发。

具体的发送过程:为每个graph创建了1个rpc连接池,发送时先从池中Fetch一个连接,然后使用这个conn调用rpcClient.Call()完成发送:

// common/backend_pool/rpc_backends.go
func (this *SafeRpcConnPools) Call(addr, method string, args interface{}, resp interface{}) error {
    connPool, exists := this.Get(addr)
    //先获取一个连接
    conn, err := connPool.Fetch()
    rpcClient := conn.(*rpcpool.RpcClient)
    done := make(chan error, 1)
    go func() {
        //具体的rpc发送
        done <- rpcClient.Call(method, args, resp)
    }()
    // select timeout进行超时控制
    select {
    case <-time.After(callTimeout):
        connPool.ForceClose(conn)
        return fmt.Errorf("%s, call timeout", addr)
    case err = <-done:
        connPool.Release(conn)
        return err
    }
}    

connPool的实现也很简单,内部维护了一个maxConns和maxIdle个数;每次fetch的时候,判断是否有空闲连接,若有空闲则直接返回,否则new一个新的:

// common/backend_pool/rpc_backends.go
func createOneRpcPool(name string, address string, connTimeout time.Duration, maxConns int, maxIdle int) *connp.ConnPool {
    p := connp.NewConnPool(name, address, int32(maxConns), int32(maxIdle))
    p.New = func(connName string) (connp.NConn, error) {
        _, err := net.ResolveTCPAddr("tcp", p.Address)
        if err != nil {
            return nil, err
        }
        conn, err := net.DialTimeout("tcp", p.Address, connTimeout)
        if err != nil {
            return nil, err
        }
        return rpcpool.NewRpcClient(rpc.NewClient(conn), connName), nil
    }
    return p
}

ConnPool实现在github.com/toolkits/conn_pool中:

//github.com/toolkits/conn_pool/conn_pool.go
func (this *ConnPool) Fetch() (NConn, error) {
    this.Lock()
    defer this.Unlock()

    // get from free
    conn := this.fetchFree()
    if conn != nil {
        return conn, nil
    }

    if this.overMax() {
        return nil, ErrMaxConn
    }

    // create new conn
    conn, err := this.newConn()
    if err != nil {
        return nil, err
    }

    this.increActive()
    return conn, nil
}

你可能感兴趣的:(监控工具)