Numpy:表达N维数组的最基础库
- Python接口使用,C语言,计算速度优异
- Python数据分析及科学计算的基础库,支撑Pandas等
- 提供直接的矩阵运算、广播函数、线性代数等功能
NumPy库: http://www.numpy.org
Pandas:Python数据分析高层次应用库
- 提供了简单易用的数据结构和数据分析工具
- 理解数据类型与索引的关系,操作索引即操作数据
- Python最主要的数据分析功能库,基于Numpy开发
Series=索引+一维数据
DataFrame=行列索引+二维数据
pandas库: http://pandas.pydata.org
SciPy:数学、科学和工程计算功能库
Matplotlib: 高质量的二维数据可视化功能库
Seaborn:统计类数据可视化功能库
Mayavi: 三维科学数据可视化功能库
PyPDF2: 用来处理pdf文件的工具集
- 提供了一批处理PDF文件的计算功能
- 支持获取信息、分隔/整合文件、加密解密等
- 完全Python语言实现、不需要额外依赖、功能稳定
from PyPDF2 import PdfFileReader,PdfFileMerger
merger=PdfFileMerger()
input1=open("document1.pdf","rb")
input2=open("document2.pdf","rb")
merger.append(fileobj=input1,pages=(0,3))
merger.merge(position=2,fileobj=input2,pages=(0,1))
output=open("document-output.pdf","wb")
merger.write(output)
PyPDF2: http://mstamy2.github.io/PyPDF2
NLTK: 自然语言文本处理第三方库
- 提供了一批简单易用的自然语言文本处理功能
- 支持语言文本分类、标记、语法句法、语义分析等
- 最优秀的Python自然语言处理库
from nltk.corpus import treebank
t=treebank.parsed_sents('wsj_0001.mrg')[0]
t.draw()
Python-docx: 创建或更新Microsoft Word文件的第三方库
- 提供创建或更新.doc .docx等文件的计算功能
- 增加并配置段落、图片、表格、文字等,功能全面
from docx import Document
document = Document()
document.add_heading('Document Title',0)
p=document.add_paragraph('A plain paragraph having some ')
document.add_page_break()
document.save('demo.docx')
http://python-docx.readthedocs.io/en/latest/index.html
Scikit-learn:机器学习方法工具集
TensorFlow: AlphaGo背后的机器学习计算框架
- 谷歌公司推动的开源机器学习框架
- 将数据流图作为基础,图节点代表运算,边代表张量
- 应用机器学习方法的一种方式,支撑谷歌人工智能应用
import tensorflow as tf
init = tf.global_variables_initializer()
sess=tf.Session()
sess.run(init)
res=sess.run(result)
print('result:',res)
TensorFlow: https://www.tensorflow.org/
MXNet: 基于神经网络的深度学习计算框架
- 霍兰德认为:人格兴趣与职业之间应有一种内在的对应关系
- 人格分类:研究型、艺术型、社会型、企业型、传统型、现实性
- 职业:工程师、实验员、艺术家、推销员、记事员、社会工作者
- 需求:雷达图方式验证霍兰德人格分析
- 输入:各职业人群结合兴趣的调研数据
- 通用雷达图绘制:
matplotlib库
- 专业的多维数据表示:
numpy库
- 输出:雷达图
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['font.family']='SimHei'
radar_labels=np.array(['研究型(I)','艺术型(A)','社会型(S)','企业型(E)','常规型(C)','现实型(R)'])
data=np.array([[0.40,0.32,0.35,0.30,0.30,0.88],
[0.85,0.35,0.30,0.40,0.40,0.30],
[0.43,0.89,0.30,0.28,0.22,0.30],
[0.30,0.25,0.48,0.85,0.45,0.40],
[0.20,0.38,0.87,0.45,0.32,0.28],
[0.34,0.31,0.38,0.40,0.92,0.28]]) #数据值
data_labels=('艺术家','实验员','工程师','推销员','社会工作者','记事员')
angles=np.linspace(0,2*np.pi,6,endpoint=False)
data=np.concatenate((data,[data[0]]))
angles=np.concatenate((angles,[angles[0]]))
radar_labels=np.concatenate((radar_labels,[radar_labels[0]]))
fig=plt.figure(facecolor="white")
plt.subplot(111,polar=True)
plt.plot(angles,data,'o-',linewidth=1,alpha=0.2)
plt.fill(angles,data,alpha=0.25)
plt.thetagrids(angles*180/np.pi,radar_labels)
plt.figtext(0.52,0.95,'霍兰德人格分析',ha='center',size=20)
legend=plt.legend(data_labels,loc=(0.94,0.80),labelspacing=0.1)
plt.setp(legend.get_texts(),fontsize='large')
plt.grid(True)
plt.savefig('holland_radar.jpg')
plt.show()
- 编程的目标感:寻找感兴趣的目标,寻(wa)觅(jue)之
- 编程的沉浸感:寻找可实现的方法,思(zuo)考(mo)之
- 编程的熟练度:练习、练习、再练习、熟练之
Requests: 最友好的网络爬虫功能库
- 提供了简单易用的类HTTP协议网络爬虫功能
- 支持连接池、SSL、Cookies.HTTP(S)代理等
- Python最主要的页面级网络爬虫功能库
import requests
r=requests.get('https://api.github.com/user',auth=('user','pass'))
r.status_code
r.headers['content-type']
r.encoding
r.text
Requests: http://www.python-requests.org/
Scrapy: 优秀的网络爬虫框架
- 提供了构建网络爬虫系统的框架功能,功能半成品
- 支持批量和定时网页爬取、提供数据处理流程等
- Python最主要且最专业的网络爬虫框架
Scrapy: Python数据分析高层次应用库 https://scrapy.org
pyspider:强大的Web页面爬取系统
- 提供了完整的网页爬取系统构建功能
- 支持数据库后端、消息队列、优先级、分布式架构等
- Python重要的网络爬虫类第三方库
pyspider: http://docs.pyspider.org
Beautiful Soup:HTML和XML的解析库
Re: 正则表达式解析和处理功能库
Python-Goose: 提取文章类型Web页面的功能库
- 提供了对Web页面中文章信息/视频等元数据的提取功能
- 针对特定类型Web页面,应用覆盖面较广
- Python最主要的Web信息提取库
from goose import Goose
url='http://www.elmundo.es/elmundo/2012/10/28/espana/1351388909.html'
g=Goose({
'use_meta_language':False,'target_language':'es'})
article=g.extract(url=url)
article.cleaned_text[:150]
Python-Goose: https//github.com/grangier/python-goose
Django: 最流行的Web应用框架
Pyramid: 规模适中的Web应用框架
- 提供了简单方便构建Web系统的应用框架
- 不大不小,规模适中,适合快速构建并适度扩展类应用
- Python产品级Web应用框架,起步简单可扩展性好
from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response
def hello_world(request):
return Response('Hello World!')
if __name__ =='__main__':
with Configurator() as config:
config.add_route('hello','/')
config.add_view(hello_world,route_name='hello')
app=config.make_wsgi_app()
server=make_server('0.0.0.0',6543,app)
server.serve_forever()
Pyramid: https://trypyramid.com/
Flask: Web应用开发微框架
- 提供了最简单构建Web系统的应用框架
- 特点是:简单、规模小、快速
- Django > Pyramid > Flask 好
from flask import Flask
app = Flask(__name__)
@app.route('/')
def hello_world():
return 'Hello,World!'
Flask: http://flask.pocoo.org
WeRoBot: 微信公众号开发框架
- 提供了解析微信服务器消息及反馈消息的功能
- 建立微信机器人的重要技术手段
import werobot
robot =werobot.WeRoBot(token='tokenhere')
@robot.handler
def hello(message):
return 'Hello World!'
WeRoBot: https://github.com/offu/WeRoBot
aip: 百度AI开放平台接口
MyQR: 二维码生成第三方库
PyQt5: Qt开发框架的Python接口
wxPython: 跨平台GUI开发框架
- 提供了专用于Python的跨平台GUI开发框架
- 理解数据类型与索引的关系,操作索引即操作数据
- Python最主要的数据分析功能库,基于Numpy开发
import wx
app=wx.App(False)
frame=wx.Frame(None,wx.ID_ANY,"Hello World")
frame.Show(True)
app.MainLoop()
wxPython: https://www.wxpython.org
PyGObject: 使用GTK+开发GUI的功能库
- 提供了整合GTK+、WebKitGTK+等库的功能
- GTK: 跨平台的一种用户图形界面GUI框架
- 实例: Anaconda采用该库构建GUI
import gi
gi.require_version("Gtk","3.0")
from gi.repository import Gtk
window =Gtk.Window(title="Hello World")
window.show()
window.connect("destroy",Gtk.main_quit)
Gtk.main()
PyGObject: https://pygobject.readthedocs.io
PyGame: 简单的游戏开发功能库
Panda3D: 开源、跨平台的3D渲染和游戏开发库
cocos2d: 构建2D游戏和图形界面交互式应用的框架
VR Zero: 在树莓派上开发VR应用的Python库
pyovr:Oculus Rift的Python开发接口
Vizard: 基于Python的通用VR开发引擎
Quads: 迭代的艺术
ascii_art: ASCII艺术库
turtle: 海龟绘图体系
- 绘制机理:turtle基本图形绘制
- 绘制思想:因人而异
- 思想有多大、世界就有多大
#代码如下:
import turtle as t
#定义一个曲线绘制函数
def DegreeCurve(n,r,d=1):
for i in range(n):
t.left(d)
t.circle(r,abs(d))
#初始位置设定
s=0.2 #size
t.setup(450*5*s,750*5*s)
t.pencolor("black")
t.fillcolor("red")
t.speed(100)
t.penup()
t.goto(0,900*s)
t.pendown()
#绘制 花朵形状
t.begin_fill()
t.circle(200*s,30)
DegreeCurve(60,50*s)
t.circle(200*s,30)
DegreeCurve(4,100*s)
t.circle(200*s,50)
DegreeCurve(50,50*s)
t.circle(350*s,65)
DegreeCurve(40,70*s)
t.circle(150*s,50)
DegreeCurve(20,50*s,-1)
t.circle(400*s,60)
DegreeCurve(18,50*s)
t.fd(250*s)
t.right(150)
t.circle(-500*s,12)
t.left(140)
t.circle(550*s,110)
t.left(27)
t.circle(650*s,100)
t.left(130)
t.circle(-300*s,20)
t.right(123)
t.circle(220*s,57)
t.end_fill()
#绘制花枝形状
t.left(120)
t.fd(280*s)
t.left(115)
t.circle(300*s,33)
t.left(180)
t.circle(-300*s,33)
DegreeCurve(70,225*s,-1)
t.circle(350*s,104)
t.left(90)
t.circle(200*s,105)
t.circle(-500*s,63)
t.penup()
t.goto(170*s,-30*s)
t.pendown()
t.left(160)
DegreeCurve(20,2500*s)
DegreeCurve(220,250*s,-1)
#绘制一个绿色的叶子
t.fillcolor('green')
t.penup()
t.goto(670*s,-180*s)
t.pendown()
t.right(140)
t.begin_fill()
t.circle(300*s,120)
t.left(60)
t.circle(300*s,120)
t.end_fill()
t.penup()
t.goto(180*s,-550*s)
t.pendown()
t.right(85)
t.circle(600*s,40)
#绘制另一个绿色叶子
t.penup()
t.goto(-150*s,-1000*s)
t.pendown()
t.begin_fill()
t.rt(120)
t.circle(300*s,115)
t.left(75)
t.circle(300*s,100)
t.end_fill()
t.penup()
t.goto(430*s,-1070*s)
t.pendown()
t.right(30)
t.circle(-600*s,35)
t.done()
- 艺术:思想优先,编程是手段
- 设计:想法和编程同等重要
- 工程:编程优先,思想次之
- 认识自己:明确自己的目标,有自己的思想(想法)
- 方式方法:编程只是手段,熟练之,未雨绸缪为思想服务
- 为谁编程:将自身发展与祖国发展相结合,创造真正价值
第一题 系统基本信息获取
题目描述:获取系统的递归深度、当前执行文件路径、系统最大UNICODE编码值等3个信息,并打印输出。
输出格式:
RECLIMIT:<深度>, EXEPATH:<文件路径>, UNICODE:<最大编码值>
提示:请在sys标准库中寻找上述功能
输入示例:无
输出示例:RECLIMIT:500, EXEPATH:/bin/python, UNICODE:1411
代码如下:
import sys
print("RECLIMIT:{}, EXEPATH:{}, UNICODE:{}".format(sys.getrecursionlimit(), sys.executable, sys.maxunicode))
第二题 二维数据表格输出
题目描述:tabulate能够对二维数据进行表格输出,是Python优秀的第三方计算生态。
参考编程模板中给定的数据和代码,编写程序,能够输出如下风格效果的表格数据。
from tabulate import tabulate
data = [ ["北京理工大学", "985", 2000], \
["清华大学", "985", 3000], \
["大连理工大学", "985", 4000], \
["深圳大学", "211", 2000], \
["沈阳大学", "省本", 2000], \
]
print(tabulate(data, tablefmt="grid"))