「 数据结构 」 和 「 算法 」 是密不可分的,两者往往是「 相辅相成 」的存在,所以,在学习 「 数据结构 」 的过程中,不免会遇到各种「 算法 」。
数据结构 常用的操作一般为:「 增 」「 删 」「 改 」「 查 」。基本上所有的数据结构都是围绕这几个操作进行展开的。
那么这篇文章,作者将用 「 三张动图 」 来阐述一种 「 均摊 O(1) 」 的数据结构
「 哈希表 」
饭不食,水不饮,题必须刷
C语言免费动漫教程,和我一起打卡! 《光天化日学C语言》
LeetCode 太难?先看简单题! 《C语言入门100例》
数据结构难?不存在的! 《画解数据结构》
闭关刷 LeetCode,剑指大厂Offer! 《LeetCode 刷题指引》
LeetCode 太简单?算法学起来! 《夜深人静写算法》
哈希表常用的方法是 开放定址法 和 链地址法:开放定址法
链地址法
看不懂没有关系,我会把它拆开来一个一个讲,首先来看一下今天要学习的内容目录。
当我们在一个 链表 或者 顺序表 中 查找 一个数据元素 是否存在 的时候,唯一的方法就是遍历整个表,这种方法称为 线性枚举。
如果这时候,顺序表是有序的情况下,我们可以采用折半的方式去查找,这种方法称为 二分枚举。
线性枚举 的时间复杂度为 O ( n ) O(n) O(n)。二分枚举 的时间复杂度为 O ( l o g 2 n ) O(log_2n) O(log2n)。是否存在更快速的查找方式呢?这就是本要介绍的一种新的数据结构 —— 哈希表。
由于它不是顺序结构,所以很多数据结构书上称之为 散列表,下文会统一采用 哈希表 的形式来说明,作为读者,只需要知道这两者是同一种数据结构即可。
我们把需要查找的数据,通过一个 函数映射,找到 存储数据的位置 的过程称为 哈希。这里涉及到几个概念:
a)需要 查找的数据 本身被称为 关键字;
b)通过 函数映射 将 关键字 变成一个 哈希值 的过程中,这里的 函数 被称为 哈希函数;
c)生成 哈希值 的过程过程可能产生冲突,需要进行 冲突解决;
d)解决完冲突以后,实际 存储数据的位置 被称为 哈希地址,通俗的说,它就是一个数组下标;
e)存储所有这些数据的数据结构就是 哈希表,程序实现上一般采用数组实现,所以又叫 哈希数组。整个过程如下图所示:
为了方便下标索引,哈希表 的底层实现结构是一个数组,数组类型可以是任意类型,每个位置被称为一个槽。如下图所示,它代表的是一个长度为 8 的 哈希表,又叫 哈希数组。
关键字 是哈希数组中的元素,可以是任意类型的,它可以是整型、浮点型、字符型、字符串,甚至是结构体或者类。如下的 A、C、M 都可以是关键字;
int A = 5;
char C[100] = "Hello World!";
struct Obj {
};
Obj M;
哈希表的实现过程中,我们需要通过一些手段,将一个非整型的 关键字 转换成 数组下标,也就是 哈希值,从而通过 O ( 1 ) O(1) O(1) 的时间快速索引到它所对应的位置。
而将一个非整型的 关键字 转换成 整型 的手段就是 哈希函数。
哈希函数可以简单的理解为就是小学课本上那个函数,即 y = f ( x ) y = f(x) y=f(x),这里的 f ( x ) f(x) f(x) 就是哈希函数, x x x 是关键字, y y y 是哈希值。好的哈希函数应该具备以下两个特质:
a)单射;
b)雪崩效应:输入值 x x x 的 1 1 1 比特的变化,能够造成输出值 y y y 至少一半比特的变化;
单射很容易理解,图 ( a ) (a) (a) 中已知哈希值 y y y 时,键 x x x 可能有两种情况,不是一个单射;而图 ( b ) (b) (b) 中已知哈希值 y y y 时,键 x x x 一定是唯一确定的,所以它是单射。由于 x x x 和 y y y 一一对应,这样就从本原上减少了冲突。
雪崩效应是为了让哈希值更加符合随机分布的原则,哈希表中的键分布的越随机,利用率越高,效率也越高。
常用的哈希函数有:直接定址法、除留余数法、数字分析法、平方取中法、折叠法、随机数法 等等。有关哈希函数的内容,下文会进行详细讲解。
哈希函数在生成 哈希值 的过程中,如果产生 不同的关键字得到相同的哈希值 的情况,就被称为 哈希冲突。
即对于哈希函数 y = f ( x ) y = f(x) y=f(x),当关键字 x 1 ≠ x 2 x_1 \neq x_2 x1=x2,但是却有 f ( x 1 ) = f ( x 2 ) f(x_1) = f(x_2) f(x1)=f(x2),这时候,我们需要进行冲突解决。
冲突解决方法有很多,主要有:开放定址法、再散列函数法、链地址法、公共溢出区法 等等。有关解决冲突的内容,下文会进行详细讲解。
哈希地址 就是一个 数组下标 ,即哈希数组的下标。通过下标获得数据,被称为 索引。通过数据获得下标,被称为 哈希。平时工作的时候,和同事交流时用到的一个词 反查 就是说的 哈希。
直接定址法 就是 关键字 本身就是 哈希值,表示成函数值就是 f ( x ) = x f(x) = x f(x)=x 例如,我们需要统计一个字符串中每个字符的出现次数,就可以通过这种方法。任何一个字符的范围都是 [ 0 , 255 ] [0, 255] [0,255],所以只要用一个长度为 256 的哈希数组就可以存储每个字符对应的出现次数,利用一次遍历枚举就可以解决这个问题。C代码实现如下:
int i, hash[256];
for(i = 0; str[i]; ++i) {
++hash[ str[i] ];
}
这个就是最基础的直接定址法的实现。hash[c]
代表字符c
在这个字符串str
中的出现次数。
平方取中法 就是对 关键字 进行平方,再取中间的某几位作为 哈希值。
例如,对于关键字 1314 1314 1314,得到平方为 1726596 1726596 1726596,取中间三位作为哈希值,即 265 265 265。
平方取中法 比较适用于 不清楚关键字的分布,且位数也不是很大 的情况。
折叠法 是将关键字分割成位数相等的几部分(注意最后一部分位数不够可以短一些),然后再进行求和,得到一个 哈希值。
例如,对于关键字 5201314 5201314 5201314,将它分为四组,并且相加得到: 52 + 01 + 31 + 4 = 88 52+01+31+4 = 88 52+01+31+4=88,这就是哈希值。
折叠法 比较适用于 不清楚关键字的分布,但是关键字位数较多 的情况。
除留余数法 就是 关键字 模上 哈希表 长度,表示成函数值就是 f ( x ) = x m o d m f(x) = x \ mod \ m f(x)=x mod m 其中 m m m 代表了哈希表的长度,这种方法,不仅可以对关键字直接取模,也可以在 平方取中法、折叠法 之后再取模。
例如,对于一个长度为 4 的哈希数组,我们可以将关键字 模 4 得到哈希值,如图所示:
哈希数组的长度一般选择 2 的幂,因为我们知道取模运算是比较耗时的,而位运算相对较为高效。
选择 2 的幂作为数组长度,可以将 取模运算 转换成 二进制位与。
令 m = 2 k m = 2^k m=2k,那么它的二进制表示就是: m = ( 1 000...000 ⏟ k ) 2 m = (1\underbrace{000...000}_{\rm k})_2 m=(1k 000...000)2,任何一个数模上 m m m,就相当于取了 m m m 的二进制低 k k k 位,而 m − 1 = ( 111...111 ⏟ k ) 2 m-1 = (\underbrace{111...111}_{\rm k})_2 m−1=(k 111...111)2 ,所以和 位与 m − 1 m-1 m−1 的效果是一样的。即: x % S = = x & ( S − 1 ) x \ \% \ S == x \ \& \ (S - 1) x % S==x & (S−1) 除了直接定址法,其它三种方法都有可能导致哈希冲突,接下来,我们就来讨论下常用的一些哈希冲突的解决方案。
开放定址法 就是一旦发生冲突,就去寻找下一个空的地址,只要哈希表足够大,总能找到一个空的位置,并且记录下来作为它的 哈希地址。公式如下: f i ( x ) = ( f ( x ) + d i ) m o d m f_i(x) = (f(x)+d_i) \ mod \ m fi(x)=(f(x)+di) mod m
这里的 d i d_i di 是一个数列,可以是常数列 ( 1 , 1 , 1 , . . . , 1 ) (1, 1, 1, ...,1) (1,1,1,...,1),也可以是等差数列 ( 1 , 2 , 3 , . . . , m − 1 ) (1,2,3,...,m-1) (1,2,3,...,m−1)。
上图中,采用的是哈希函数算法是 除留余数法,采用的哈希冲突解决方案是 开放定址法,哈希表的每个数据就是一个关键字,插入之前需要先进行查找,如果找到的位置未被插入,则执行插入;否则,找到下一个未被插入的位置进行插入;总共插入了 6 个数据,分别为:11、12、13、20、19、28。
这种方法需要注意的是,当插入数据超过哈希表长度时,不能再执行插入。
本文在第四章讲解 哈希表的现实 时采用的就是常数列的开放定址法。
再散列函数法 就是一旦发生冲突,就采用另一个哈希函数,可以是 平方取中法、折叠法、除留余数法 等等的组合,一般用两个哈希函数,产生冲突的概率已经微乎其微了。
再散列函数法 能够使关键字不产生聚集,当然,也会增加不少哈希函数的计算时间。
待补充
当然,产生冲突后,我们也可以选择不换位置,还是在原来的位置,只是把 哈希值 相同的用链表串联起来。这种方法被称为 链地址法。
上图中,采用的是哈希函数算法是 除留余数法,采用的哈希冲突解决方案是 链地址法,哈希表的每个数据保留了一个 链表头结点 和 尾结点,插入之前需要先进行查找,如果找到的位置,链表非空,则插入尾结点并且更新尾结点;否则,生成一个新的链表头结点和尾结点;总共插入了 6 个数据,分别为:11、12、13、20、19、28。
一旦产生冲突的数据,统一放到另外一个顺序表中,每次查找数据,在哈希数组中到的关键字和给定关键字相等,则认为查找成功;否则,就去公共溢出区顺序查找,这种方法被称为 公共溢出区法。
这种方法适合冲突较少的情况。
待补充
由于哈希表的底层存储还是数组,所以我们可以定义一个结构体,结构体中定义一个数组类型的成员,如果需要记录哈希表元素的个数,还可以记录一个 size
字段。
C语言实现如下:
#define maxn (1<<17) // (1)
#define mask (maxn-1) // (2)
#define DataType int // (3)
#define Boolean int // (4)
#define NULLKEY (maxn+2) // (5)
typedef struct {
DataType data[maxn];
}HashTable;
int
;NULLKEY
作为哈希表对应位置为空时的标记,必须是一个非关键字能取到的值;哈希表初始化要做的事情,就是把哈希表的每个位置都置空。C语言代码实现如下:
void HashInit(HashTable *ht) {
int i;
for(i = 0; i < maxn; ++i) {
ht->data[i] = NULLKEY; // (1)
}
}
哈希函数计算采用 除留余数法 的优化版本 位与法。C语言代码实现如下:
int HashGetAddr(DataType key) {
return key & mask;
}
查找需要采用和插入时相同的哈希冲突方案,即开放寻址法。C语言代码实现如下:
Boolean HashSearchKey(HashTable *ht, DataType key, int *addr) {
int startaddr = HashGetAddr(key); // (1)
*addr = startaddr; // (2)
while(ht->data[*addr] != key) {
// (3)
*addr = HashGetAddr(*addr + 1); // (4)
if(ht->data[*addr] == NULLKEY) // (5)
return 0;
if(*addr == startaddr) // (6)
return 0;
}
return 1; // (7)
}
HashGetAddr
计算得到一个哈希值startaddr
;addr
是需要作为返回值的,所以要用解引用;addr
对应查找,如果不是空位,则继续 ( 4 ) (4) (4);否则,跳出循环;哈希冲突时(即当没有合适位置),就找下一相邻位置,即寻址数列为常数列 ( 1 , 1 , 1 , . . . , 1 ) (1,1,1,...,1) (1,1,1,...,1)。插入需要注意当哈希表慢时,不能再执行插入操作。C语言代码实现如下:
int HashInsert(HashTable *ht, DataType key) {
int addr = HashGetAddr(key); // (1)
int retaddr;
if ( HashSearchKey(ht, key, &retaddr ) ) {
// (2)
return retaddr;
}
while(ht->data[addr] != NULLKEY) // (3)
addr = HashGetAddr(addr + 1); // (4)
ht->data[addr] = key; // (5)
return addr; // (6)
}
HashGetAddr
计算得到一个哈希值addr
;addr
对应查找,如果不是空位,则继续 ( 3 ) (3) (3);否则,跳出循环;addr
位置没有其它元素占据,则可以作为当前key
的位置进行插入;addr
作为key
的哈希地址;有了查找的基础,删除操作就比较简单了,如果不能找到一个关键字的位置,则不对哈希表进行任何操作,返回空关键字;否则,将找到的位置赋为空关键字,并且返回删除的位置;
int HashRemove(HashTable *ht, DataType key) {
int addr;
if ( !HashSearchKey(ht, key, &addr ) ) {
// (1)
return NULLKEY;
}
ht->data[addr] = NULLKEY; // (2)
return addr;
}
最后,给出一个 开放定址法 的哈希表的完整实现,如下:
/******************** 哈希表 开放定址法 ********************/
#define maxn (1<<17)
#define mask (maxn-1)
#define DataType int
#define Boolean int
#define NULLKEY (1<<30)
typedef struct {
DataType data[maxn];
}HashTable;
void HashInit(HashTable *ht) {
int i;
for(i = 0; i < maxn; ++i) {
ht->data[i] = NULLKEY;
}
}
int HashGetAddr(DataType key) {
return key & mask;
}
Boolean HashSearchKey(HashTable *ht, DataType key, int *addr) {
int startaddr = HashGetAddr(key);
*addr = startaddr;
while(ht->data[*addr] != key) {
*addr = HashGetAddr(*addr + 1);
if(ht->data[*addr] == NULLKEY) {
return 0;
}
if(*addr == startaddr) {
return 0;
}
}
return 1;
}
int HashInsert(HashTable *ht, DataType key) {
int addr = HashGetAddr(key);
int retaddr;
if ( HashSearchKey(ht, key, &retaddr ) ) {
return retaddr;
}
while(ht->data[addr] != NULLKEY)
addr = HashGetAddr(addr + 1);
ht->data[addr] = key;
return addr;
}
int HashRemove(HashTable *ht, DataType key) {
int addr;
if ( !HashSearchKey(ht, key, &addr ) ) {
return NULLKEY;
}
ht->data[addr] = NULLKEY;
return addr;
}
/******************** 哈希表 开放定址法 ********************/
本文介绍的哈希表,是最简单的哈希表,对于刷 LeetCode 已经绰绰有余了,但是如果需要更深入的哈希表相关知识,可以参考以下这篇文章:夜深人静写算法(九)- 哈希表。
LeetCode 525. 连续数组
LeetCode 387. 字符串中的第一个唯一字符
LeetCode 41. 缺失的第一个正数
LeetCode 76. 最小覆盖子串
LeetCode 3. 无重复字符的最长子串
LeetCode 560. 和为K的子数组
LeetCode 380. O(1) 时间插入、删除和获取随机元素
关于 「 哈希表 」 的内容到这里就结束了。
如果还有不懂的问题,可以 「 通过主页 」找到作者的「 联系方式 」 ,线上沟通交流。
有关《画解数据结构》 的源码均开源,链接如下:《画解数据结构》
饭不食,水不饮,题必须刷
C语言免费动漫教程,和我一起打卡! 《光天化日学C语言》
LeetCode 太难?先看简单题! 《C语言入门100例》
数据结构难?不存在的! 《画解数据结构》
闭关刷 LeetCode,剑指大厂Offer! 《LeetCode 刷题指引》
LeetCode 太简单?算法学起来! 《夜深人静写算法》