Nginx源码分析:master/worker工作流程概述

nginx源码分析

nginx-1.11.1
参考书籍《深入理解nginx模块开发与架构解析》

Nginx的master与worker工作模式

在生成环境中的Nginx启动模式基本都是以master/worker为主进行启动运行,通过master/worker的工作方式可以利用多核系统的并发处理能力,master主要就是负责与worker进程进行通信,控制并负载每个worker进程的连接处理以达到worker进程的负载均衡,本文就开始分析一下该模式

master的启动过程

信号相关初始化

在Nginx中的工作方式,进程间的通信基于信号的较多,通过信号来实现相关进程的管理工作,在初始化的过程中,有注册了相关信号的初始化。

ngx_signal_t  signals[] = {
    { ngx_signal_value(NGX_RECONFIGURE_SIGNAL),
      "SIG" ngx_value(NGX_RECONFIGURE_SIGNAL),
      "reload",
      ngx_signal_handler },                                 // 重新加载信号处理

    { ngx_signal_value(NGX_REOPEN_SIGNAL),
      "SIG" ngx_value(NGX_REOPEN_SIGNAL),
      "reopen",
      ngx_signal_handler },                                 // 日志重新打开信号处理

    { ngx_signal_value(NGX_NOACCEPT_SIGNAL),
      "SIG" ngx_value(NGX_NOACCEPT_SIGNAL),
      "",
      ngx_signal_handler },

    { ngx_signal_value(NGX_TERMINATE_SIGNAL),
      "SIG" ngx_value(NGX_TERMINATE_SIGNAL),                // 停止信号
      "stop",
      ngx_signal_handler },

    { ngx_signal_value(NGX_SHUTDOWN_SIGNAL),
      "SIG" ngx_value(NGX_SHUTDOWN_SIGNAL),                 // 退出信号
      "quit",
      ngx_signal_handler },

    { ngx_signal_value(NGX_CHANGEBIN_SIGNAL),
      "SIG" ngx_value(NGX_CHANGEBIN_SIGNAL),
      "",
      ngx_signal_handler },

    { SIGALRM, "SIGALRM", "", ngx_signal_handler },

    { SIGINT, "SIGINT", "", ngx_signal_handler },

    { SIGIO, "SIGIO", "", ngx_signal_handler },

    { SIGCHLD, "SIGCHLD", "", ngx_signal_handler },

    { SIGSYS, "SIGSYS, SIG_IGN", "", SIG_IGN },

    { SIGPIPE, "SIGPIPE, SIG_IGN", "", SIG_IGN },

    { 0, NULL, "", NULL }
};



ngx_int_t
ngx_init_signals(ngx_log_t *log)                                        // 注册相关信号处理函数
{
    ngx_signal_t      *sig;
    struct sigaction   sa;

    for (sig = signals; sig->signo != 0; sig++) {                       // 遍历信号列表
        ngx_memzero(&sa, sizeof(struct sigaction));                     // 内存清零 sa
        sa.sa_handler = sig->handler;                                   // 获取处理的handler
        sigemptyset(&sa.sa_mask);                                       
        if (sigaction(sig->signo, &sa, NULL) == -1) {                   // 设置信号处理
#if (NGX_VALGRIND)
            ngx_log_error(NGX_LOG_ALERT, log, ngx_errno,
                          "sigaction(%s) failed, ignored", sig->signame);
#else
            ngx_log_error(NGX_LOG_EMERG, log, ngx_errno,
                          "sigaction(%s) failed", sig->signame);
            return NGX_ERROR;
#endif
        }
    }

    return NGX_OK;                                                      // 信号处理成功
}

主要是注册了相关的信号处理函数ngx_signal_handler,

void
ngx_signal_handler(int signo)
{
    char            *action;
    ngx_int_t        ignore;
    ngx_err_t        err;
    ngx_signal_t    *sig;

    ignore = 0;

    err = ngx_errno;

    for (sig = signals; sig->signo != 0; sig++) {           // 判断信号是否在列表中
        if (sig->signo == signo) {                          // 住过找到
            break;
        }
    }

    ngx_time_sigsafe_update();                              // 更新时间

    action = "";

    switch (ngx_process) {                      

    case NGX_PROCESS_MASTER:
    case NGX_PROCESS_SINGLE:
        switch (signo) {

        case ngx_signal_value(NGX_SHUTDOWN_SIGNAL):         // 判断相关信号并赋值相关标志位
            ngx_quit = 1;
            action = ", shutting down";
            break;

        case ngx_signal_value(NGX_TERMINATE_SIGNAL):
        case SIGINT:
            ngx_terminate = 1;
            action = ", exiting";
            break;
    ...
}

信号初始化完成之后,就继续执行master的初始化。

master/worker的初始化

在初始化完成之后,就进入ngx_master_process_cycle的执行,

void
ngx_master_process_cycle(ngx_cycle_t *cycle)
{
    char              *title;
    u_char            *p;
    size_t             size;
    ngx_int_t          i;
    ngx_uint_t         n, sigio;
    sigset_t           set;
    struct itimerval   itv;
    ngx_uint_t         live;
    ngx_msec_t         delay;
    ngx_listening_t   *ls;
    ngx_core_conf_t   *ccf;

    sigemptyset(&set);                                              // 设置信号量处理
    sigaddset(&set, SIGCHLD);
    sigaddset(&set, SIGALRM);
    sigaddset(&set, SIGIO);
    sigaddset(&set, SIGINT);
    sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL));
    sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL));
    sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL));
    sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL));
    sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL));
    sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL));

    if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) {                 // 设置信号量处理 屏蔽注册的信号
        ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                      "sigprocmask() failed");
    }

    sigemptyset(&set);                                              // 清除信号数据


    size = sizeof(master_process);

    for (i = 0; i < ngx_argc; i++) {
        size += ngx_strlen(ngx_argv[i]) + 1;
    }

    title = ngx_pnalloc(cycle->pool, size);                         // 获取内存
    if (title == NULL) {
        /* fatal */
        exit(2);
    }

    p = ngx_cpymem(title, master_process, sizeof(master_process) - 1);  // 拷贝进程名称信息
    for (i = 0; i < ngx_argc; i++) {
        *p++ = ' ';
        p = ngx_cpystrn(p, (u_char *) ngx_argv[i], size);
    }

    ngx_setproctitle(title);                                            // 设置进程名称                    


    ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module);       // 获取配置信息

    ngx_start_worker_processes(cycle, ccf->worker_processes,
                               NGX_PROCESS_RESPAWN);                        // 启动worker进程
    ngx_start_cache_manager_processes(cycle, 0);                            // 启动cache进程

    ngx_new_binary = 0;
    delay = 0;
    sigio = 0;
    live = 1;

    for ( ;; ) {
        if (delay) {                                                        // 是否有过期事件
            if (ngx_sigalrm) {                                              // 是否是定时器到期信号
                sigio = 0;
                delay *= 2;
                ngx_sigalrm = 0;                                            // 置零
            }

            ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
                           "termination cycle: %M", delay);

            itv.it_interval.tv_sec = 0;                                     // 设置定时器
            itv.it_interval.tv_usec = 0;
            itv.it_value.tv_sec = delay / 1000;
            itv.it_value.tv_usec = (delay % 1000 ) * 1000;

            if (setitimer(ITIMER_REAL, &itv, NULL) == -1) {                 // 重新设置定时器
                ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                              "setitimer() failed");
            }
        }

        ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend");

        sigsuspend(&set);                                                   // 阻塞等待信号发生

        ngx_time_update();                                                  // 更新时间

        ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
                       "wake up, sigio %i", sigio);

        if (ngx_reap) {
            ngx_reap = 0;
            ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children");

            live = ngx_reap_children(cycle);                                // 有子进程结束检查worker状态
        }

        if (!live && (ngx_terminate || ngx_quit)) {
            ngx_master_process_exit(cycle);                                 // 主进程退出
        }

        if (ngx_terminate) {                                                // 强制关闭
            if (delay == 0) {
                delay = 50;
            }

            if (sigio) {
                sigio--;
                continue;
            }

            sigio = ccf->worker_processes + 2 /* cache processes */;

            if (delay > 1000) {
                ngx_signal_worker_processes(cycle, SIGKILL);               // 超时就强行关闭     
            } else {
                ngx_signal_worker_processes(cycle,
                                       ngx_signal_value(NGX_TERMINATE_SIGNAL));     // 发送终止信号
            }

            continue;
        }

        if (ngx_quit) {
            ngx_signal_worker_processes(cycle,
                                        ngx_signal_value(NGX_SHUTDOWN_SIGNAL));     // 让子进程退出

            ls = cycle->listening.elts;
            for (n = 0; n < cycle->listening.nelts; n++) {                          // 关闭连接
                if (ngx_close_socket(ls[n].fd) == -1) {
                    ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_socket_errno,
                                  ngx_close_socket_n " %V failed",
                                  &ls[n].addr_text);
                }
            }
            cycle->listening.nelts = 0;                                             // 连接数置空

            continue;
        }

        if (ngx_reconfigure) {                                                      // 重新加载配置
            ngx_reconfigure = 0;                                                    // 置位0

            if (ngx_new_binary) {
                ngx_start_worker_processes(cycle, ccf->worker_processes,
                                           NGX_PROCESS_RESPAWN);
                ngx_start_cache_manager_processes(cycle, 0);
                ngx_noaccepting = 0;

                continue;
            }

            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring");

            cycle = ngx_init_cycle(cycle);                                          // 重新初始化配置
            if (cycle == NULL) {
                cycle = (ngx_cycle_t *) ngx_cycle;
                continue;
            }

            ngx_cycle = cycle;                                                      // 重置该变量
            ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx,
                                                   ngx_core_module);                // 获取配置文件
            ngx_start_worker_processes(cycle, ccf->worker_processes,
                                       NGX_PROCESS_JUST_RESPAWN);                   // 开始子进程
            ngx_start_cache_manager_processes(cycle, 1);                            // 开启cache

            /* allow new processes to start */
            ngx_msleep(100);                                                        

            live = 1;
            ngx_signal_worker_processes(cycle,
                                        ngx_signal_value(NGX_SHUTDOWN_SIGNAL));     // 停止已经存在的工作子进程
        }

        if (ngx_restart) {
            ngx_restart = 0;
            ngx_start_worker_processes(cycle, ccf->worker_processes,
                                       NGX_PROCESS_RESPAWN);                        // 重启
            ngx_start_cache_manager_processes(cycle, 0);
            live = 1;
        }

        if (ngx_reopen) {
            ngx_reopen = 0;
            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs");
            ngx_reopen_files(cycle, ccf->user);
            ngx_signal_worker_processes(cycle,
                                        ngx_signal_value(NGX_REOPEN_SIGNAL));       // 重新打开日志文件
        }

        if (ngx_change_binary) {
            ngx_change_binary = 0;
            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "changing binary");
            ngx_new_binary = ngx_exec_new_binary(cycle, ngx_argv);
        }

        if (ngx_noaccept) {
            ngx_noaccept = 0;
            ngx_noaccepting = 1;                                                    // 重置标志位
            ngx_signal_worker_processes(cycle, 
                                        ngx_signal_value(NGX_SHUTDOWN_SIGNAL));     // 给子进程发送信号
        }
    }
}

该函数,主要就是先屏蔽不需要关注的信号,然后通过ngx_start_worker_processes函数启动子进程,启动完子进程之后,就进入for的死循环中,该循环的主要作用就是等待相关信号的发生,等待定时器的事件发生,等待对该进程重启、停止等相关信号操作的事件发生,worker的管理工作都集中于for循环的列表中进行的操作。至此master的主要工作就分析完成。

worker的启动运行

worker进程的启动主要是通过ngx_start_worker_processes该函数开始的,

static void
ngx_start_worker_processes(ngx_cycle_t *cycle, ngx_int_t n, ngx_int_t type)
{
    ngx_int_t      i;
    ngx_channel_t  ch;

    ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "start worker processes");

    ngx_memzero(&ch, sizeof(ngx_channel_t));                                        // 申请管道空间

    ch.command = NGX_CMD_OPEN_CHANNEL;                                              // 打开管道

    for (i = 0; i < n; i++) {                                                       // 生成多少个worker进程

        ngx_spawn_process(cycle, ngx_worker_process_cycle,
                          (void *) (intptr_t) i, "worker process", type);           // 生成worker子进程并设置进程名称

        ch.pid = ngx_processes[ngx_process_slot].pid;                               // 获取PID
        ch.slot = ngx_process_slot;                             
        ch.fd = ngx_processes[ngx_process_slot].channel[0];

        ngx_pass_open_channel(cycle, &ch);                                          // 打开管道
    }
}

此时继续查看ngx_spawn_process来查看子进程的生成过程;

ngx_pid_t
ngx_spawn_process(ngx_cycle_t *cycle, ngx_spawn_proc_pt proc, void *data,
    char *name, ngx_int_t respawn)
{
    u_long     on;
    ngx_pid_t  pid;
    ngx_int_t  s;

    if (respawn >= 0) {                                         
        s = respawn;

    } else {
        for (s = 0; s < ngx_last_process; s++) {                            // 找到ngx_process中一个可用的位置
            if (ngx_processes[s].pid == -1) {
                break;
            }
        }

        if (s == NGX_MAX_PROCESSES) {                                       // 如果大于最大的则报错
            ngx_log_error(NGX_LOG_ALERT, cycle->log, 0,
                          "no more than %d processes can be spawned",
                          NGX_MAX_PROCESSES);
            return NGX_INVALID_PID;
        }
    }


    if (respawn != NGX_PROCESS_DETACHED) {                                  // 相关管道的操作

        /* Solaris 9 still has no AF_LOCAL */

        if (socketpair(AF_UNIX, SOCK_STREAM, 0, ngx_processes[s].channel) == -1)
        {
            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                          "socketpair() failed while spawning \"%s\"", name);
            return NGX_INVALID_PID;
        }

        ngx_log_debug2(NGX_LOG_DEBUG_CORE, cycle->log, 0,
                       "channel %d:%d",
                       ngx_processes[s].channel[0],
                       ngx_processes[s].channel[1]);

        if (ngx_nonblocking(ngx_processes[s].channel[0]) == -1) {
            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                          ngx_nonblocking_n " failed while spawning \"%s\"",
                          name);
            ngx_close_channel(ngx_processes[s].channel, cycle->log);
            return NGX_INVALID_PID;
        }

        if (ngx_nonblocking(ngx_processes[s].channel[1]) == -1) {
            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                          ngx_nonblocking_n " failed while spawning \"%s\"",
                          name);
            ngx_close_channel(ngx_processes[s].channel, cycle->log);
            return NGX_INVALID_PID;
        }

        on = 1;
        if (ioctl(ngx_processes[s].channel[0], FIOASYNC, &on) == -1) {
            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                          "ioctl(FIOASYNC) failed while spawning \"%s\"", name);
            ngx_close_channel(ngx_processes[s].channel, cycle->log);
            return NGX_INVALID_PID;
        }

        if (fcntl(ngx_processes[s].channel[0], F_SETOWN, ngx_pid) == -1) {
            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                          "fcntl(F_SETOWN) failed while spawning \"%s\"", name);
            ngx_close_channel(ngx_processes[s].channel, cycle->log);
            return NGX_INVALID_PID;
        }

        if (fcntl(ngx_processes[s].channel[0], F_SETFD, FD_CLOEXEC) == -1) {
            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                          "fcntl(FD_CLOEXEC) failed while spawning \"%s\"",
                           name);
            ngx_close_channel(ngx_processes[s].channel, cycle->log);
            return NGX_INVALID_PID;
        }

        if (fcntl(ngx_processes[s].channel[1], F_SETFD, FD_CLOEXEC) == -1) {
            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                          "fcntl(FD_CLOEXEC) failed while spawning \"%s\"",
                           name);
            ngx_close_channel(ngx_processes[s].channel, cycle->log);
            return NGX_INVALID_PID;
        }

        ngx_channel = ngx_processes[s].channel[1];

    } else {
        ngx_processes[s].channel[0] = -1;
        ngx_processes[s].channel[1] = -1;
    }

    ngx_process_slot = s;                                                   // 赋值s


    pid = fork();                                                           // 生成子进程

    switch (pid) {

    case -1:
        ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                      "fork() failed while spawning \"%s\"", name);
        ngx_close_channel(ngx_processes[s].channel, cycle->log);
        return NGX_INVALID_PID;                                             // 如果出错则返回

    case 0:
        ngx_pid = ngx_getpid();                                             // 子进程获取pid
        proc(cycle, data);                                                  // 执行子进程
        break;

    default:
        break;
    }

    ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "start %s %P", name, pid);

    ngx_processes[s].pid = pid;                                             // 父进程获取当前执行的pid
    ngx_processes[s].exited = 0;                                            // 是否退出设置为0

    if (respawn >= 0) {
        return pid;
    }

    ngx_processes[s].proc = proc;                                       
    ngx_processes[s].data = data;
    ngx_processes[s].name = name;
    ngx_processes[s].exiting = 0;

    switch (respawn) {

    case NGX_PROCESS_NORESPAWN:
        ngx_processes[s].respawn = 0;
        ngx_processes[s].just_spawn = 0;
        ngx_processes[s].detached = 0;
        break;

    case NGX_PROCESS_JUST_SPAWN:
        ngx_processes[s].respawn = 0;
        ngx_processes[s].just_spawn = 1;
        ngx_processes[s].detached = 0;
        break;

    case NGX_PROCESS_RESPAWN:
        ngx_processes[s].respawn = 1;
        ngx_processes[s].just_spawn = 0;
        ngx_processes[s].detached = 0;
        break;

    case NGX_PROCESS_JUST_RESPAWN:
        ngx_processes[s].respawn = 1;
        ngx_processes[s].just_spawn = 1;
        ngx_processes[s].detached = 0;
        break;

    case NGX_PROCESS_DETACHED:
        ngx_processes[s].respawn = 0;
        ngx_processes[s].just_spawn = 0;
        ngx_processes[s].detached = 1;
        break;
    }

    if (s == ngx_last_process) {
        ngx_last_process++;
    }

    return pid;                                                             // 返回PID
}

其中在生成子进程之后,就调用了proc方法来执行子进程的相关操作,此时的proc就是对应的ngx_worker_process_cycle函数;

static void
ngx_worker_process_cycle(ngx_cycle_t *cycle, void *data)
{
    ngx_int_t worker = (intptr_t) data;

    ngx_process = NGX_PROCESS_WORKER;
    ngx_worker = worker;

    ngx_worker_process_init(cycle, worker);                     // 初始化

    ngx_setproctitle("worker process");                         // 设置进程名称

    for ( ;; ) {

        if (ngx_exiting) {                                      // 是否退出
            ngx_event_cancel_timers();                          // 取消事件定时器

            if (ngx_event_timer_rbtree.root == ngx_event_timer_rbtree.sentinel)
            {
                ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "exiting");

                ngx_worker_process_exit(cycle);                 // 退出
            }
        }

        ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "worker cycle");

        ngx_process_events_and_timers(cycle);                   // 处理请求与连接

        if (ngx_terminate) {                                    // 是否终止
            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "exiting");

            ngx_worker_process_exit(cycle);
        }

        if (ngx_quit) {                                         // 是否退出
            ngx_quit = 0;
            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0,
                          "gracefully shutting down");
            ngx_setproctitle("worker process is shutting down");

            if (!ngx_exiting) {
                ngx_exiting = 1;
                ngx_close_listening_sockets(cycle);             // 关闭连接
                ngx_close_idle_connections(cycle);              
            }
        }

        if (ngx_reopen) {                                       // 重新打开日志文件
            ngx_reopen = 0;
            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs");
            ngx_reopen_files(cycle, -1);
        }
    }
}

由该函数可知,此时worker子进程就工作在for循环中,通过调用ngx_process_events_and_timers函数进行请求的处理与事件的处理。worker的工作就此开始运行,后续将进一步分析worker启动过程中的相关初始化与事件处理机制。

总结

本文大致描述了nginx在master/worker工作模式下,master的工作流程的启动与worker工作进程的启动过程,master与worker之间也初始化了管道通信,也注册了信号相关的处理,worker在接受到master相关的信号时会执行相关操作,本文只是简单的描述了启动过程与基本的工作机制,后续还将继续分析。鉴于本人才疏学浅,如有疏漏请批评指正。

你可能感兴趣的:(服务端,Nginx,源码)