nginx-1.11.1
参考书籍《深入理解nginx模块开发与架构解析》
在生成环境中的Nginx启动模式基本都是以master/worker为主进行启动运行,通过master/worker的工作方式可以利用多核系统的并发处理能力,master主要就是负责与worker进程进行通信,控制并负载每个worker进程的连接处理以达到worker进程的负载均衡,本文就开始分析一下该模式
在Nginx中的工作方式,进程间的通信基于信号的较多,通过信号来实现相关进程的管理工作,在初始化的过程中,有注册了相关信号的初始化。
ngx_signal_t signals[] = {
{ ngx_signal_value(NGX_RECONFIGURE_SIGNAL),
"SIG" ngx_value(NGX_RECONFIGURE_SIGNAL),
"reload",
ngx_signal_handler }, // 重新加载信号处理
{ ngx_signal_value(NGX_REOPEN_SIGNAL),
"SIG" ngx_value(NGX_REOPEN_SIGNAL),
"reopen",
ngx_signal_handler }, // 日志重新打开信号处理
{ ngx_signal_value(NGX_NOACCEPT_SIGNAL),
"SIG" ngx_value(NGX_NOACCEPT_SIGNAL),
"",
ngx_signal_handler },
{ ngx_signal_value(NGX_TERMINATE_SIGNAL),
"SIG" ngx_value(NGX_TERMINATE_SIGNAL), // 停止信号
"stop",
ngx_signal_handler },
{ ngx_signal_value(NGX_SHUTDOWN_SIGNAL),
"SIG" ngx_value(NGX_SHUTDOWN_SIGNAL), // 退出信号
"quit",
ngx_signal_handler },
{ ngx_signal_value(NGX_CHANGEBIN_SIGNAL),
"SIG" ngx_value(NGX_CHANGEBIN_SIGNAL),
"",
ngx_signal_handler },
{ SIGALRM, "SIGALRM", "", ngx_signal_handler },
{ SIGINT, "SIGINT", "", ngx_signal_handler },
{ SIGIO, "SIGIO", "", ngx_signal_handler },
{ SIGCHLD, "SIGCHLD", "", ngx_signal_handler },
{ SIGSYS, "SIGSYS, SIG_IGN", "", SIG_IGN },
{ SIGPIPE, "SIGPIPE, SIG_IGN", "", SIG_IGN },
{ 0, NULL, "", NULL }
};
ngx_int_t
ngx_init_signals(ngx_log_t *log) // 注册相关信号处理函数
{
ngx_signal_t *sig;
struct sigaction sa;
for (sig = signals; sig->signo != 0; sig++) { // 遍历信号列表
ngx_memzero(&sa, sizeof(struct sigaction)); // 内存清零 sa
sa.sa_handler = sig->handler; // 获取处理的handler
sigemptyset(&sa.sa_mask);
if (sigaction(sig->signo, &sa, NULL) == -1) { // 设置信号处理
#if (NGX_VALGRIND)
ngx_log_error(NGX_LOG_ALERT, log, ngx_errno,
"sigaction(%s) failed, ignored", sig->signame);
#else
ngx_log_error(NGX_LOG_EMERG, log, ngx_errno,
"sigaction(%s) failed", sig->signame);
return NGX_ERROR;
#endif
}
}
return NGX_OK; // 信号处理成功
}
主要是注册了相关的信号处理函数ngx_signal_handler,
void
ngx_signal_handler(int signo)
{
char *action;
ngx_int_t ignore;
ngx_err_t err;
ngx_signal_t *sig;
ignore = 0;
err = ngx_errno;
for (sig = signals; sig->signo != 0; sig++) { // 判断信号是否在列表中
if (sig->signo == signo) { // 住过找到
break;
}
}
ngx_time_sigsafe_update(); // 更新时间
action = "";
switch (ngx_process) {
case NGX_PROCESS_MASTER:
case NGX_PROCESS_SINGLE:
switch (signo) {
case ngx_signal_value(NGX_SHUTDOWN_SIGNAL): // 判断相关信号并赋值相关标志位
ngx_quit = 1;
action = ", shutting down";
break;
case ngx_signal_value(NGX_TERMINATE_SIGNAL):
case SIGINT:
ngx_terminate = 1;
action = ", exiting";
break;
...
}
信号初始化完成之后,就继续执行master的初始化。
在初始化完成之后,就进入ngx_master_process_cycle的执行,
void
ngx_master_process_cycle(ngx_cycle_t *cycle)
{
char *title;
u_char *p;
size_t size;
ngx_int_t i;
ngx_uint_t n, sigio;
sigset_t set;
struct itimerval itv;
ngx_uint_t live;
ngx_msec_t delay;
ngx_listening_t *ls;
ngx_core_conf_t *ccf;
sigemptyset(&set); // 设置信号量处理
sigaddset(&set, SIGCHLD);
sigaddset(&set, SIGALRM);
sigaddset(&set, SIGIO);
sigaddset(&set, SIGINT);
sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL));
sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL));
sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL));
sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL));
sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL));
sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL));
if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) { // 设置信号量处理 屏蔽注册的信号
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"sigprocmask() failed");
}
sigemptyset(&set); // 清除信号数据
size = sizeof(master_process);
for (i = 0; i < ngx_argc; i++) {
size += ngx_strlen(ngx_argv[i]) + 1;
}
title = ngx_pnalloc(cycle->pool, size); // 获取内存
if (title == NULL) {
/* fatal */
exit(2);
}
p = ngx_cpymem(title, master_process, sizeof(master_process) - 1); // 拷贝进程名称信息
for (i = 0; i < ngx_argc; i++) {
*p++ = ' ';
p = ngx_cpystrn(p, (u_char *) ngx_argv[i], size);
}
ngx_setproctitle(title); // 设置进程名称
ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); // 获取配置信息
ngx_start_worker_processes(cycle, ccf->worker_processes,
NGX_PROCESS_RESPAWN); // 启动worker进程
ngx_start_cache_manager_processes(cycle, 0); // 启动cache进程
ngx_new_binary = 0;
delay = 0;
sigio = 0;
live = 1;
for ( ;; ) {
if (delay) { // 是否有过期事件
if (ngx_sigalrm) { // 是否是定时器到期信号
sigio = 0;
delay *= 2;
ngx_sigalrm = 0; // 置零
}
ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
"termination cycle: %M", delay);
itv.it_interval.tv_sec = 0; // 设置定时器
itv.it_interval.tv_usec = 0;
itv.it_value.tv_sec = delay / 1000;
itv.it_value.tv_usec = (delay % 1000 ) * 1000;
if (setitimer(ITIMER_REAL, &itv, NULL) == -1) { // 重新设置定时器
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"setitimer() failed");
}
}
ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend");
sigsuspend(&set); // 阻塞等待信号发生
ngx_time_update(); // 更新时间
ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
"wake up, sigio %i", sigio);
if (ngx_reap) {
ngx_reap = 0;
ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children");
live = ngx_reap_children(cycle); // 有子进程结束检查worker状态
}
if (!live && (ngx_terminate || ngx_quit)) {
ngx_master_process_exit(cycle); // 主进程退出
}
if (ngx_terminate) { // 强制关闭
if (delay == 0) {
delay = 50;
}
if (sigio) {
sigio--;
continue;
}
sigio = ccf->worker_processes + 2 /* cache processes */;
if (delay > 1000) {
ngx_signal_worker_processes(cycle, SIGKILL); // 超时就强行关闭
} else {
ngx_signal_worker_processes(cycle,
ngx_signal_value(NGX_TERMINATE_SIGNAL)); // 发送终止信号
}
continue;
}
if (ngx_quit) {
ngx_signal_worker_processes(cycle,
ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); // 让子进程退出
ls = cycle->listening.elts;
for (n = 0; n < cycle->listening.nelts; n++) { // 关闭连接
if (ngx_close_socket(ls[n].fd) == -1) {
ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_socket_errno,
ngx_close_socket_n " %V failed",
&ls[n].addr_text);
}
}
cycle->listening.nelts = 0; // 连接数置空
continue;
}
if (ngx_reconfigure) { // 重新加载配置
ngx_reconfigure = 0; // 置位0
if (ngx_new_binary) {
ngx_start_worker_processes(cycle, ccf->worker_processes,
NGX_PROCESS_RESPAWN);
ngx_start_cache_manager_processes(cycle, 0);
ngx_noaccepting = 0;
continue;
}
ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring");
cycle = ngx_init_cycle(cycle); // 重新初始化配置
if (cycle == NULL) {
cycle = (ngx_cycle_t *) ngx_cycle;
continue;
}
ngx_cycle = cycle; // 重置该变量
ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx,
ngx_core_module); // 获取配置文件
ngx_start_worker_processes(cycle, ccf->worker_processes,
NGX_PROCESS_JUST_RESPAWN); // 开始子进程
ngx_start_cache_manager_processes(cycle, 1); // 开启cache
/* allow new processes to start */
ngx_msleep(100);
live = 1;
ngx_signal_worker_processes(cycle,
ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); // 停止已经存在的工作子进程
}
if (ngx_restart) {
ngx_restart = 0;
ngx_start_worker_processes(cycle, ccf->worker_processes,
NGX_PROCESS_RESPAWN); // 重启
ngx_start_cache_manager_processes(cycle, 0);
live = 1;
}
if (ngx_reopen) {
ngx_reopen = 0;
ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs");
ngx_reopen_files(cycle, ccf->user);
ngx_signal_worker_processes(cycle,
ngx_signal_value(NGX_REOPEN_SIGNAL)); // 重新打开日志文件
}
if (ngx_change_binary) {
ngx_change_binary = 0;
ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "changing binary");
ngx_new_binary = ngx_exec_new_binary(cycle, ngx_argv);
}
if (ngx_noaccept) {
ngx_noaccept = 0;
ngx_noaccepting = 1; // 重置标志位
ngx_signal_worker_processes(cycle,
ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); // 给子进程发送信号
}
}
}
该函数,主要就是先屏蔽不需要关注的信号,然后通过ngx_start_worker_processes函数启动子进程,启动完子进程之后,就进入for的死循环中,该循环的主要作用就是等待相关信号的发生,等待定时器的事件发生,等待对该进程重启、停止等相关信号操作的事件发生,worker的管理工作都集中于for循环的列表中进行的操作。至此master的主要工作就分析完成。
worker进程的启动主要是通过ngx_start_worker_processes该函数开始的,
static void
ngx_start_worker_processes(ngx_cycle_t *cycle, ngx_int_t n, ngx_int_t type)
{
ngx_int_t i;
ngx_channel_t ch;
ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "start worker processes");
ngx_memzero(&ch, sizeof(ngx_channel_t)); // 申请管道空间
ch.command = NGX_CMD_OPEN_CHANNEL; // 打开管道
for (i = 0; i < n; i++) { // 生成多少个worker进程
ngx_spawn_process(cycle, ngx_worker_process_cycle,
(void *) (intptr_t) i, "worker process", type); // 生成worker子进程并设置进程名称
ch.pid = ngx_processes[ngx_process_slot].pid; // 获取PID
ch.slot = ngx_process_slot;
ch.fd = ngx_processes[ngx_process_slot].channel[0];
ngx_pass_open_channel(cycle, &ch); // 打开管道
}
}
此时继续查看ngx_spawn_process来查看子进程的生成过程;
ngx_pid_t
ngx_spawn_process(ngx_cycle_t *cycle, ngx_spawn_proc_pt proc, void *data,
char *name, ngx_int_t respawn)
{
u_long on;
ngx_pid_t pid;
ngx_int_t s;
if (respawn >= 0) {
s = respawn;
} else {
for (s = 0; s < ngx_last_process; s++) { // 找到ngx_process中一个可用的位置
if (ngx_processes[s].pid == -1) {
break;
}
}
if (s == NGX_MAX_PROCESSES) { // 如果大于最大的则报错
ngx_log_error(NGX_LOG_ALERT, cycle->log, 0,
"no more than %d processes can be spawned",
NGX_MAX_PROCESSES);
return NGX_INVALID_PID;
}
}
if (respawn != NGX_PROCESS_DETACHED) { // 相关管道的操作
/* Solaris 9 still has no AF_LOCAL */
if (socketpair(AF_UNIX, SOCK_STREAM, 0, ngx_processes[s].channel) == -1)
{
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"socketpair() failed while spawning \"%s\"", name);
return NGX_INVALID_PID;
}
ngx_log_debug2(NGX_LOG_DEBUG_CORE, cycle->log, 0,
"channel %d:%d",
ngx_processes[s].channel[0],
ngx_processes[s].channel[1]);
if (ngx_nonblocking(ngx_processes[s].channel[0]) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
ngx_nonblocking_n " failed while spawning \"%s\"",
name);
ngx_close_channel(ngx_processes[s].channel, cycle->log);
return NGX_INVALID_PID;
}
if (ngx_nonblocking(ngx_processes[s].channel[1]) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
ngx_nonblocking_n " failed while spawning \"%s\"",
name);
ngx_close_channel(ngx_processes[s].channel, cycle->log);
return NGX_INVALID_PID;
}
on = 1;
if (ioctl(ngx_processes[s].channel[0], FIOASYNC, &on) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"ioctl(FIOASYNC) failed while spawning \"%s\"", name);
ngx_close_channel(ngx_processes[s].channel, cycle->log);
return NGX_INVALID_PID;
}
if (fcntl(ngx_processes[s].channel[0], F_SETOWN, ngx_pid) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"fcntl(F_SETOWN) failed while spawning \"%s\"", name);
ngx_close_channel(ngx_processes[s].channel, cycle->log);
return NGX_INVALID_PID;
}
if (fcntl(ngx_processes[s].channel[0], F_SETFD, FD_CLOEXEC) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"fcntl(FD_CLOEXEC) failed while spawning \"%s\"",
name);
ngx_close_channel(ngx_processes[s].channel, cycle->log);
return NGX_INVALID_PID;
}
if (fcntl(ngx_processes[s].channel[1], F_SETFD, FD_CLOEXEC) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"fcntl(FD_CLOEXEC) failed while spawning \"%s\"",
name);
ngx_close_channel(ngx_processes[s].channel, cycle->log);
return NGX_INVALID_PID;
}
ngx_channel = ngx_processes[s].channel[1];
} else {
ngx_processes[s].channel[0] = -1;
ngx_processes[s].channel[1] = -1;
}
ngx_process_slot = s; // 赋值s
pid = fork(); // 生成子进程
switch (pid) {
case -1:
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"fork() failed while spawning \"%s\"", name);
ngx_close_channel(ngx_processes[s].channel, cycle->log);
return NGX_INVALID_PID; // 如果出错则返回
case 0:
ngx_pid = ngx_getpid(); // 子进程获取pid
proc(cycle, data); // 执行子进程
break;
default:
break;
}
ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "start %s %P", name, pid);
ngx_processes[s].pid = pid; // 父进程获取当前执行的pid
ngx_processes[s].exited = 0; // 是否退出设置为0
if (respawn >= 0) {
return pid;
}
ngx_processes[s].proc = proc;
ngx_processes[s].data = data;
ngx_processes[s].name = name;
ngx_processes[s].exiting = 0;
switch (respawn) {
case NGX_PROCESS_NORESPAWN:
ngx_processes[s].respawn = 0;
ngx_processes[s].just_spawn = 0;
ngx_processes[s].detached = 0;
break;
case NGX_PROCESS_JUST_SPAWN:
ngx_processes[s].respawn = 0;
ngx_processes[s].just_spawn = 1;
ngx_processes[s].detached = 0;
break;
case NGX_PROCESS_RESPAWN:
ngx_processes[s].respawn = 1;
ngx_processes[s].just_spawn = 0;
ngx_processes[s].detached = 0;
break;
case NGX_PROCESS_JUST_RESPAWN:
ngx_processes[s].respawn = 1;
ngx_processes[s].just_spawn = 1;
ngx_processes[s].detached = 0;
break;
case NGX_PROCESS_DETACHED:
ngx_processes[s].respawn = 0;
ngx_processes[s].just_spawn = 0;
ngx_processes[s].detached = 1;
break;
}
if (s == ngx_last_process) {
ngx_last_process++;
}
return pid; // 返回PID
}
其中在生成子进程之后,就调用了proc方法来执行子进程的相关操作,此时的proc就是对应的ngx_worker_process_cycle函数;
static void
ngx_worker_process_cycle(ngx_cycle_t *cycle, void *data)
{
ngx_int_t worker = (intptr_t) data;
ngx_process = NGX_PROCESS_WORKER;
ngx_worker = worker;
ngx_worker_process_init(cycle, worker); // 初始化
ngx_setproctitle("worker process"); // 设置进程名称
for ( ;; ) {
if (ngx_exiting) { // 是否退出
ngx_event_cancel_timers(); // 取消事件定时器
if (ngx_event_timer_rbtree.root == ngx_event_timer_rbtree.sentinel)
{
ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "exiting");
ngx_worker_process_exit(cycle); // 退出
}
}
ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "worker cycle");
ngx_process_events_and_timers(cycle); // 处理请求与连接
if (ngx_terminate) { // 是否终止
ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "exiting");
ngx_worker_process_exit(cycle);
}
if (ngx_quit) { // 是否退出
ngx_quit = 0;
ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0,
"gracefully shutting down");
ngx_setproctitle("worker process is shutting down");
if (!ngx_exiting) {
ngx_exiting = 1;
ngx_close_listening_sockets(cycle); // 关闭连接
ngx_close_idle_connections(cycle);
}
}
if (ngx_reopen) { // 重新打开日志文件
ngx_reopen = 0;
ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs");
ngx_reopen_files(cycle, -1);
}
}
}
由该函数可知,此时worker子进程就工作在for循环中,通过调用ngx_process_events_and_timers函数进行请求的处理与事件的处理。worker的工作就此开始运行,后续将进一步分析worker启动过程中的相关初始化与事件处理机制。
本文大致描述了nginx在master/worker工作模式下,master的工作流程的启动与worker工作进程的启动过程,master与worker之间也初始化了管道通信,也注册了信号相关的处理,worker在接受到master相关的信号时会执行相关操作,本文只是简单的描述了启动过程与基本的工作机制,后续还将继续分析。鉴于本人才疏学浅,如有疏漏请批评指正。