$$
这是行间公式
$$ $$
这是独立公式
空格一格
输入
空格两格
输入
空行一行
输入
空格: \quad \quad
3 4 \frac{3}{4} 43 %某行显示被压缩,独行正常显示
3 4 \dfrac{3}{4} 43 %在某行,想正常显示,用\dfrac
3 4 \tfrac{3}{4} 43 %强制成某行内的大小,用\tfrac
a 2 a_{2} a2
a 2 a^{2} a2
4 3 \sqrt[3]{4} 34
( X ) \Big(X\Big) (X)
$\frac{3}{4}$ %某行显示被压缩,独行正常显示
$\dfrac{3}{4}$ %在某行,想正常显示,用\dfrac
$\tfrac{3}{4}$ %强制成某行内的大小,用\tfrac
$a_{2}$
$a^{2}$
$\sqrt[3]{4}$
$\Big(X\Big)$
add sub | mul | divi | point mul | greater than or equal to | less than or equal to | not equal | approx equal |
---|---|---|---|---|---|---|---|
\pm | \times | \div | \cdot | \geq | \leq | \neq | \approx |
± \pm ± | × \times × | ÷ \div ÷ | ⋅ \cdot ⋅ | ≥ \geq ≥ | ≤ \leq ≤ | ≠ \neq = | ≈ \approx ≈ |
\mp | \leftrightarrow | \Rightarrow | \exists | \forall | \in | \cup | \cap | \infty | \to |
---|---|---|---|---|---|---|---|---|---|
∓ \mp ∓ | ↔ \leftrightarrow ↔ | ⇒ \Rightarrow ⇒ | ∃ \exists ∃ | ∀ \forall ∀ | ∈ \in ∈ | ∪ \cup ∪ | ∩ \cap ∩ | ∞ \infty ∞ | → \to → |
累加 | 累乘 | 极限 | 积分 | 省略号 |
---|---|---|---|---|
\sum | \prod | \lim | \int | \cdots |
∑ \sum ∑ | ∏ \prod ∏ | lim \lim lim | ∫ \int ∫ | ⋯ \cdots ⋯ |
\limits
使用方法
$\sum_{i=0}^{n}{(x_i+y_i)}$ $\quad\rightarrow\quad$ $\sum\limits_{i=0}^{n}{(x_i+y_i)}$
$\sum_{i=0}^{n}{(x_i+y_i)}$ $\quad\rightarrow\quad$ $\sum\limits_{i=0}^{n}{(x_i+y_i)}$
$\prod_{i=0}^{n}{x_i\cdot y_i}$ $\quad\rightarrow\quad$ $\prod\limits_{i=0}^{n}{x_i\cdot y_i}$
$\prod\limits_{i=3}^{n}{x_i \cdot y_i \cdot z_i}$
$\lim_{x \to 0}\frac{sinx}{x}$
$\int_{a}^{b}{sinx}dx$
∑ i = 0 n ( x i + y i ) \sum_{i=0}^{n}{(x_i+y_i)} ∑i=0n(xi+yi) → \quad\rightarrow\quad → ∑ i = 0 n ( x i + y i ) \sum\limits_{i=0}^{n}{(x_i+y_i)} i=0∑n(xi+yi)
∑ i = 0 n ( x i + y i ) \sum_{i=0}^{n}{(x_i+y_i)} ∑i=0n(xi+yi) → \quad\rightarrow\quad → ∑ i = 0 n ( x i + y i ) \sum\limits_{i=0}^{n}{(x_i+y_i)} i=0∑n(xi+yi)
∏ i = 0 n x i ⋅ y i \prod_{i=0}^{n}{x_i\cdot y_i} ∏i=0nxi⋅yi → \quad\rightarrow\quad → ∏ i = 0 n x i ⋅ y i \prod\limits_{i=0}^{n}{x_i\cdot y_i} i=0∏nxi⋅yi
∏ i = 3 n x i ⋅ y i ⋅ z i \prod\limits_{i=3}^{n}{x_i \cdot y_i \cdot z_i} i=3∏nxi⋅yi⋅zi
lim x → 0 s i n x x \lim_{x \to 0}\frac{sinx}{x} limx→0xsinx
∫ a b s i n x d x \int_{a}^{b}{sinx}dx ∫absinxdx
\alpha | \beta | \gamma | \delta | \eta | \Delta | \theta |
---|---|---|---|---|---|---|
α \alpha α | β \beta β | γ \gamma γ | δ \delta δ | η \eta η | Δ \Delta Δ | θ \theta θ |
\tau | \kappa | \lambda | \mu | \xi | \pi | \Pi | \partia |
---|---|---|---|---|---|---|---|
τ \tau τ | κ \kappa κ | λ \lambda λ | μ \mu μ | ξ \xi ξ | π \pi π | Π \Pi Π | ∂ \partial ∂ |
\rho | \sigma | \Sigma | \varphi | \psi | \Psi | \Omega |
---|---|---|---|---|---|---|
ρ \rho ρ | σ \sigma σ | Σ \Sigma Σ | φ \varphi φ | ψ \psi ψ | Ψ \Psi Ψ | Ω \Omega Ω |
\bar{x} | \vec{x} | \hat{x} | \tilde{x} | \dot{x} | \ddot{x} |
---|---|---|---|---|---|
x ˉ \bar{x} xˉ | x ⃗ \vec{x} x | x ^ \hat{x} x^ | x ~ \tilde{x} x~ | x ˙ \dot{x} x˙ | x ¨ \ddot{x} x¨ |
\partial x | \mathrm{d} x | \dot{x} | \ddot{x} | \nabla f |
---|---|---|---|---|
∂ x \partial x ∂x | d x \mathrm{d} x dx | x ˙ \dot{x} x˙ | x ¨ \ddot{x} x¨ | ∇ f \nabla f ∇f |
表达形式1:
A = ( a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 ) × B (1-1) A=\left( \begin{matrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{matrix} \right) \times {B} \tag{1-1} A=⎝⎛a1a4a7a2a5a8a3a6a9⎠⎞×B(1-1)
$$
A=\left(
\begin{matrix}
a_1 & a_2 & a_3 \\
a_4 & a_5 & a_6 \\
a_7 & a_8 & a_9
\end{matrix}
\right)
\times {B}
\tag{1-1}
$$
表达形式2:
A = [ a 1 1 a 1 2 a 2 1 a 2 2 ] × B (1-2) A = \left[ \begin{matrix} a_11 & a_12 \\ a_21 & a_22 \end{matrix} \right] \times {B} \tag{1-2} A=[a11a21a12a22]×B(1-2)
$$
A = \left[
\begin{matrix}
a_11 & a_12 \\
a_21 & a_22
\end{matrix}
\right]
\times {B}
\tag{1-2}
$$
表达形式3:
[ 1 2 3 4 5 6 7 8 9 ] (1-3) \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \tag{1-3} ⎣⎡147258369⎦⎤(1-3)
$$
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
\tag{1-3}
$$
表达形式4:
{ 1 2 3 4 5 6 7 8 9 } (1-4) \begin{Bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{Bmatrix} \tag{1-4} ⎩⎨⎧147258369⎭⎬⎫(1-4)
$$
\begin{Bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{Bmatrix}
\tag{1-4}
$$
更复杂的矩阵会用到···
\dots | \cdots | \vdots | \ddots |
---|---|---|---|
… \dots … | ⋯ \cdots ⋯ | ⋮ \vdots ⋮ | ⋱ \ddots ⋱ |
f ( x ) = { c o s x x + s i n x x ≥ 0 a x 2 + b x + c x ≤ 0 (1-5) f(x)= \begin{cases} \dfrac{cosx}{x+sinx} & x \geq 0 \\ ax^2+bx+c & x \leq 0 \end{cases} \tag{1-5} f(x)={ x+sinxcosxax2+bx+cx≥0x≤0(1-5)
$$
f(x)=
\begin{cases}
\dfrac{cosx}{x+sinx} & x \geq 0 \\
ax^2+bx+c & x \leq 0
\end{cases}
\tag{1-5}
$$