【总结篇】markdown常用数学公式

文章目录

    • 1. 基础知识
    • 2. 基础运算符
    • 3. 特殊符号
    • 4. 常用希腊字母(查表法)
    • 5. 微分求导
    • 6. 矩阵表达形式
    • 7. 分段函数表达形式

1. 基础知识

$$        这是行间公式
$$ $$  这是独立公式

空格一格
输入  

空格两格
输入

空行一行
输入

空格: \quad \quad

3 4 \frac{3}{4} 43 %某行显示被压缩,独行正常显示

3 4 \dfrac{3}{4} 43 %在某行,想正常显示,用\dfrac

3 4 \tfrac{3}{4} 43 %强制成某行内的大小,用\tfrac

a 2 a_{2} a2

a 2 a^{2} a2

4 3 \sqrt[3]{4} 34

( X ) \Big(X\Big) (X)

$\frac{3}{4}$   %某行显示被压缩,独行正常显示
$\dfrac{3}{4}$  %在某行,想正常显示,用\dfrac
$\tfrac{3}{4}$  %强制成某行内的大小,用\tfrac
$a_{2}$  
$a^{2}$  
$\sqrt[3]{4}$  
$\Big(X\Big)$

2. 基础运算符

add sub mul divi point mul greater than or equal to less than or equal to not equal approx equal
\pm \times \div \cdot \geq \leq \neq \approx
± \pm ± × \times × ÷ \div ÷ ⋅ \cdot ≥ \geq ≤ \leq ≠ \neq = ≈ \approx

3. 特殊符号

\mp \leftrightarrow \Rightarrow \exists \forall \in \cup \cap \infty \to
∓ \mp ↔ \leftrightarrow ⇒ \Rightarrow ∃ \exists ∀ \forall ∈ \in ∪ \cup ∩ \cap ∞ \infty → \to
累加 累乘 极限 积分 省略号
\sum \prod \lim \int \cdots
∑ \sum ∏ \prod lim ⁡ \lim lim ∫ \int ⋯ \cdots

\limits 使用方法

$\sum_{i=0}^{n}{(x_i+y_i)}$ $\quad\rightarrow\quad$ $\sum\limits_{i=0}^{n}{(x_i+y_i)}$
$\sum_{i=0}^{n}{(x_i+y_i)}$ $\quad\rightarrow\quad$ $\sum\limits_{i=0}^{n}{(x_i+y_i)}$  
$\prod_{i=0}^{n}{x_i\cdot y_i}$ $\quad\rightarrow\quad$ $\prod\limits_{i=0}^{n}{x_i\cdot y_i}$
$\prod\limits_{i=3}^{n}{x_i \cdot y_i \cdot z_i}$  
$\lim_{x \to 0}\frac{sinx}{x}$  
$\int_{a}^{b}{sinx}dx$  

∑ i = 0 n ( x i + y i ) \sum_{i=0}^{n}{(x_i+y_i)} i=0n(xi+yi) → \quad\rightarrow\quad ∑ i = 0 n ( x i + y i ) \sum\limits_{i=0}^{n}{(x_i+y_i)} i=0n(xi+yi)

∑ i = 0 n ( x i + y i ) \sum_{i=0}^{n}{(x_i+y_i)} i=0n(xi+yi) → \quad\rightarrow\quad ∑ i = 0 n ( x i + y i ) \sum\limits_{i=0}^{n}{(x_i+y_i)} i=0n(xi+yi)

∏ i = 0 n x i ⋅ y i \prod_{i=0}^{n}{x_i\cdot y_i} i=0nxiyi → \quad\rightarrow\quad ∏ i = 0 n x i ⋅ y i \prod\limits_{i=0}^{n}{x_i\cdot y_i} i=0nxiyi

∏ i = 3 n x i ⋅ y i ⋅ z i \prod\limits_{i=3}^{n}{x_i \cdot y_i \cdot z_i} i=3nxiyizi

lim ⁡ x → 0 s i n x x \lim_{x \to 0}\frac{sinx}{x} limx0xsinx

∫ a b s i n x d x \int_{a}^{b}{sinx}dx absinxdx

4. 常用希腊字母(查表法)

\alpha \beta \gamma \delta \eta \Delta \theta
α \alpha α β \beta β γ \gamma γ δ \delta δ η \eta η Δ \Delta Δ θ \theta θ
\tau \kappa \lambda \mu \xi \pi \Pi \partia
τ \tau τ κ \kappa κ λ \lambda λ μ \mu μ ξ \xi ξ π \pi π Π \Pi Π ∂ \partial
\rho \sigma \Sigma \varphi \psi \Psi \Omega
ρ \rho ρ σ \sigma σ Σ \Sigma Σ φ \varphi φ ψ \psi ψ Ψ \Psi Ψ Ω \Omega Ω

5. 微分求导

\bar{x} \vec{x} \hat{x} \tilde{x} \dot{x} \ddot{x}
x ˉ \bar{x} xˉ x ⃗ \vec{x} x x ^ \hat{x} x^ x ~ \tilde{x} x~ x ˙ \dot{x} x˙ x ¨ \ddot{x} x¨
\partial x \mathrm{d} x \dot{x} \ddot{x} \nabla f
∂ x \partial x x d x \mathrm{d} x dx x ˙ \dot{x} x˙ x ¨ \ddot{x} x¨ ∇ f \nabla f f

6. 矩阵表达形式

表达形式1:
A = ( a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 ) × B (1-1) A=\left( \begin{matrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{matrix} \right) \times {B} \tag{1-1} A=a1a4a7a2a5a8a3a6a9×B(1-1)

$$
A=\left(
    \begin{matrix}
        a_1 & a_2 & a_3 \\
        a_4 & a_5 & a_6 \\
        a_7 & a_8 & a_9
    \end{matrix} 
    \right) 
    \times {B}
    \tag{1-1}
$$

表达形式2:
A = [ a 1 1 a 1 2 a 2 1 a 2 2 ] × B (1-2) A = \left[ \begin{matrix} a_11 & a_12 \\ a_21 & a_22 \end{matrix} \right] \times {B} \tag{1-2} A=[a11a21a12a22]×B(1-2)

$$ 
A = \left[
        \begin{matrix}
            a_11 & a_12 \\
            a_21 & a_22
        \end{matrix}
    \right]
    \times {B}
    \tag{1-2}  
$$

表达形式3:
[ 1 2 3 4 5 6 7 8 9 ] (1-3) \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \tag{1-3} 147258369(1-3)

$$
 \begin{bmatrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{bmatrix} 
  \tag{1-3}
$$

表达形式4:
{ 1 2 3 4 5 6 7 8 9 } (1-4) \begin{Bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{Bmatrix} \tag{1-4} 147258369(1-4)

$$
 \begin{Bmatrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{Bmatrix} 
  \tag{1-4}
$$

更复杂的矩阵会用到···

\dots \cdots \vdots \ddots
… \dots ⋯ \cdots ⋮ \vdots ⋱ \ddots

7. 分段函数表达形式

f ( x ) = { c o s x x + s i n x x ≥ 0 a x 2 + b x + c x ≤ 0 (1-5) f(x)= \begin{cases} \dfrac{cosx}{x+sinx} & x \geq 0 \\ ax^2+bx+c & x \leq 0 \end{cases} \tag{1-5} f(x)={ x+sinxcosxax2+bx+cx0x0(1-5)

$$
f(x)=
    \begin{cases}
        \dfrac{cosx}{x+sinx} & x \geq 0 \\
         ax^2+bx+c & x \leq 0
    \end{cases}
    \tag{1-5}
$$

你可能感兴趣的:(大千世界-杂项汇总,markdown)