单条记录单条记录的随机put操作。Single Put所对应的接口定义如下:
在AsyncTable接口中的定义:
CompletableFuture<void> put(Put put);
在Table接口中的定义:
void put(Put put) throw IOException;
汇聚了几十条甚至是几百上千条记录之后的小批次随机put操作。
Batch Put只是本文对该类型操作的称法,实际的接口名称如下所示:
在AsyncTable接口中的定义:
List<CompletableFuture<void>> put(List<Put> puts);
在Table接口中的定义:
void put(List<Put> puts) throws IOException;
基于MapReduce API提供的数据批量导入能力,导入数据量通常在GB级别以上,Bulkload能够绕过Java Client API直接生成HBase的底层数据文件(HFile),因此性能非常高。
写数据流程主要分为11步
为了方便理解,我们在两个字段之间添加了连接符"^"。如下是RowKey以及相关排序结果:
RowKey Format 2: StartTime + Mobile1
从上面两个表格可以看出来,不同的字段组合顺序设计,带来截然不同的排序结果,我们将RowKey中的第一个字段称之为"先导字段"。第一种设计,有利于查询"手机号码XXX的在某时间范围内的数据记录",但不利于查询"某段时间范围内有哪些手机号码拨出了电话?",而第二种设计却恰好相反。
上面是两种设计都是两个字段的直接组合,这种设计在实际应用中,会带来读写热点问题,难以保障数据读写请求在所有Regions之间的负载均衡。
假设RowKey设计:reversing(Mobile1) +StartTime
也就是说,RowKey由反转处理后的Mobile1与StartTime组成。对于我们所关注的这行数据:
RowKey应该为: 66660000431^201803011300
因为创建表时预设的Region与RowKey强相关,我们现在才可以给出本文样例所需要创建的表的"Region分割点"信息:
假设,Region分割点为"1,2,3,4,5,6,7,8,9",基于这9个分割点,可以预先创建10个Region,这10个Region的StartKey和StopKey如下所示:
第一个Region的StartKey为空,最后一个Region的StopKey为空
每一个Region区间,都包含StartKey本身,但不包含StopKey
由于Mobile1字段的最后一位是0~9之间的随机数字,因此,可以均匀打散到这10个Region中
因为meta Region的路由信息存放于ZooKeeper中,在第一次从ZooKeeper中读取META Region的地址时,需要先初始化一个ZooKeeper Session。ZooKeeper Session是ZooKeeper Client与ZooKeeper Server端所建立的一个会话,通过心跳机制保持长连接。
通过前面建立的连接,从ZooKeeper中读取meta Region所在的RegionServer,这个读取流程,当前已经是异步的。
如果这条待写入的数据采用的是Single Put的方式,那么,该步骤可以略过(事实上,单条Put操作的流程相对简单,就是先定位该RowKey所对应的Region以及RegionServer信息后,Client直接发送写请求到RegionServer侧即可)。
但如果这条数据被混杂在其它的数据列表中,采用Batch Put的方式,那么,客户端在将所有的数据写到对应的RegionServer之前,会先分组"打包",流程如下:
按Region分组:遍历每一条数据的RowKey,然后,依据meta表中记录的Region信息,确定每一条数据所属的Region。此步骤可以获取到Region到RowKey列表的映射关系。
按RegionServer"打包":因为Region一定归属于某一个RegionServer(注:本文内容中如无特殊说明,都未考虑Region Replica特性),那属于同一个RegionServer的多个Regions的写入请求,被打包成一个MultiAction对象,这样可以一并发送到每一个RegionServer中。
类似于Client发送建表到Master的流程,Client发送写数据请求到RegionServer,也是通过RPC的方式。只是,Client到Master以及Client到RegionServer,采用了不同的RPC服务接口。
single put请求与batch put请求,两者所调用的RPC服务接口方法是不同的,如下是Client.proto中的定义:
service clientService {
// single Put请求所涉及的RPC服务接口方法
rpc Mutate(MutateRequest)
returns (MutateResponse);
// batch put请求所涉及的RPC服务接口方法rpc
rpc Multi(MultiRequest)
returns(MNultiResponse);
}
RegionServer的RPC Server侧,接收到来自Client端的RPC请求以后,将该请求交给Handler线程处理。
如果是single put,则该步骤比较简单,因为在发送过来的请求参数MutateRequest中,已经携带了这条记录所关联的Region,那么直接将该请求转发给对应的Region即可。
如果是batch puts,则接收到的请求参数为MultiRequest,在MultiRequest中,混合了这个RegionServer所持有的多个Region的写入请求,每一个Region的写入请求都被包装成了一个RegionAction对象。RegionServer接收到MultiRequest请求以后,遍历所有的RegionAction,而后写入到每一个Region中,此过程是串行的:
从这里可以看出来,并不是一个batch越大越好,大的batch size甚至可能导致吞吐量下降。
HBase也采用了LSM-Tree的架构设计:LSM-Tree利用了传统机械硬盘的“顺序读写速度远高于随机读写速度”的特点。随机写入的数据,如果直接去改写每一个Region上的数据文件,那么吞吐量是非常差的。因此,每一个Region中随机写入的数据,都暂时先缓存在内存中(HBase中存放这部分内存数据的模块称之为MemStore,这里仅仅引出概念,下一章节详细介绍),为了保障数据可靠性,将这些随机写入的数据顺序写入到一个称之为WAL(Write-Ahead-Log)的日志文件中,WAL中的数据按时间顺序组织:
在HBase中,默认一个RegionServer只有一个可写的WAL文件。WAL中写入的记录,以Entry为基本单元,而一个Entry中,包含:
WALKey 包含{Encoded Region Name,Table Name,Sequence ID,Timestamp}等关键信息,其中,Sequence ID在维持数据一致性方面起到了关键作用,可以理解为一个事务ID。
WALEdit WALEdit中直接保存待写入数据的所有的KeyValues,而这些KeyValues可能来自一个Region中的多行数据。
也就是说,通常,一个Region中的一个batch put请求,会被组装成一个Entry,写入到WAL中:
每一个Column Family,在Region内部被抽象为了一个HStore对象,而每一个HStore拥有自身的MemStore,用来缓存一批最近被随机写入的数据,这是LSM-Tree核心设计的一部分。
MemStore中用来存放所有的KeyValue的数据结构,称之为CellSet,而CellSet的核心是一个ConcurrentSkipListMap,我们知道,ConcurrentSkipListMap是Java的跳表实现,数据按照Key值有序存放,而且在高并发写入时,性能远高于ConcurrentHashMap。
因此,写MemStore的过程,事实上是将batch put提交过来的所有的KeyValue列表,写入到MemStore的以ConcurrentSkipListMap为组成核心的CellSet中。
MemStore因为涉及到大量的随机写入操作,会带来大量Java小对象的创建与消亡,会导致大量的内存碎片,给GC带来比较重的压力,HBase为了优化这里的机制,借鉴了操作系统的内存分页的技术,增加了一个名为MSLab的特性,通过分配一些固定大小的Chunk,来存储MemStore中的数据,这样可以有效减少内存碎片问题,降低GC的压力。当然,ConcurrentSkipListMap本身也会创建大量的对象,这里也有很大的优化空间,去年阿里的一篇文章透露了阿里如何通过优化ConcurrentSkipListMap的结构来有效降低GC时间。
meta Region中记录了每一个用户表Region的路由以及状态信息,以RegionName(包含表名,Region StartKey,Region ID,副本ID等信息)作为RowKey
在0.94版本之前,Region中的写入顺序是先写WAL再写MemStore,这与WAL的定义也相符。
但在0.94版本中,将这两者的顺序颠倒了,当时颠倒的初衷,是为了使得行锁能够在WAL sync之前先释放,从而可以提升针对单行数据的更新性能。详细问题单,请参考HBASE-4528。
在2.0版本中,这一行为又被改回去了,原因在于修改了行锁机制以后(下面章节将讲到),发现了一些性能下降,而HBASE-4528中的优化却无法再发挥作用,详情请参考HBASE-15158。改动之后的逻辑也更简洁了。
memstore的flush
一张Hbase表包含一个或多个列族,官网上建议一张HBase表的列族个数建议在1-3之间,其实本身HBase对列族的个数是没有限制的。
详细请看rowkey的设计
详细请看rowkey的设计
HFile中包含了一个多层索引系统。这个多层索引是的HBase可以在不读取整个文件的情况下查找数据。这一多层索引类似于一个B+树。
键值对根据键大小升序排列。
索引指向64KB大小的数据块。
每一个数据块还有其相应的叶索引(leaf-index)。
每一个数据块的最后一个键作为中间索引(intermediate index)。
根索引(root index)指向中间索引。
文件结尾指向meta block。因为meta block是在数据写入硬盘操作的结尾写入该文件中的。文件的结尾同时还包含一些别的信息。比如bloom filter及时间信息。Bloom filter可以帮助HBase加速数据查询的速度。因为HBase可以利用Bloom filter跳过不包含当前查询的键的文件。时间信息则可以帮助HBase在查询时跳过读操作所期望的时间区域之外的文件。
WAL文件和HFile都存储于硬盘上且存在备份,因此恢复它们是非常容易的。那么HBase如何恢复位于内存中的MemStore呢?
当Region server宕机的时候,其所管理的region在这一故障被发现并修复之前是不可访问的。ZooKeeper负责根据服务器的心跳信息来监控服务器的工作状态。当某一服务器下线之后,ZooKeeper会发送该服务器下线的通知。HMaster收到这一通知之后会进行恢复操作。
HMaster会首先将宕机的Region server所管理的region分配给其他仍在工作的活跃的Region server。然后HMaster会将该服务器的WAL分割并分别分配给相应的新分配的Region server进行存储。新的Region server会读取并顺序执行WAL中的数据操作,从而重新创建相应的MemStore。
WAL文件之中存储了一系列数据操作。每一个操作对应WAL中的一行。新的操作会顺序写在WAL文件的末尾。
那么当MemStore中存储的数据因为某种原因丢失之后应该如何恢复呢?HBase以来WAL对其进行恢复。相应的Region server会顺序读取WAL并执行其中的操作。这些数据被存入内存中当前的MemStore并排序。最终当MemStore存满之后,这些数据被flush到硬盘上。