如何利用K-Means将文件夹中图像进行分类?

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

K-Means聚类是最常用的无监督机器学习算法之一。顾名思义,它可用于创建数据集群,从本质上将它们隔离。

现在,我们将做一个简单的示例,将文件夹中的图像进行分离,该文件夹既有猫也有狗的图像。并且将创建两个单独的文件夹(群集),我们将介绍如何自动确定K的最佳值。

如何利用K-Means将文件夹中图像进行分类?_第1张图片

猫和狗的图像数据集

首先,我们将从导入所需的库开始。

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import cv2
import os, glob, shutil

然后我们会从文件夹中的图像读取所有的图像并对其进行处理,以提取特征提取。我们将图像大小调整为224x224,以匹配模型输入层的大小以进行特征提取。

input_dir = 'pets'
glob_dir = input_dir + '/*.jpg'
images = [cv2.resize(cv2.imread(file), (224, 224)) for file in glob.glob(glob_dir)]
paths = [file for file in glob.glob(glob_dir)]
images = np.array(np.float32(images).reshape(len(images), -1)/255)

现在,我们将在MobileNetV2(传输学习)的帮助下进行特征提取。当然我们可以使用ResNet50,InceptionV3等,但是MobileNetV2速度很快,而且资源也不是很多。

model = tf.keras.applications.MobileNetV2(include_top=False,
weights=’imagenet’, input_shape=(224, 224, 3))
predictions = model.predict(images.reshape(-1, 224, 224, 3))
pred_images = predictions.reshape(images.shape[0], -1)

现在,我们已经实现了提取功能,现在可以使用KMeans进行聚类了。

k = 2
kmodel = KMeans(n_clusters = k, n_jobs=-1, random_state=728)
kmodel.fit(pred_images)
kpredictions = kmodel.predict(pred_images)
shutil.rmtree(‘output’)
for i in range(k):
    os.makedirs(“output\cluster” + str(i))
for i in range(len(paths)):
    shutil.copy2(paths[i], “output\cluster”+str(kpredictions[i]))

输出结果如下:

小狗:

如何利用K-Means将文件夹中图像进行分类?_第2张图片

猫:

如何利用K-Means将文件夹中图像进行分类?_第3张图片

另外我们如何确定数据集的K值?我们可以使用轮廓法或肘部法确定它。我们将在这里使用轮廓法,当然这两种方法都可获得最可靠的结果,所以能直接确定K。

当我们将马的图像添加到原始数据集中时,我们来确定K的值。

sil = []
kl = []
kmax = 10
for k in range(2, kmax+1):
    kmeans2 = KMeans(n_clusters = k).fit(pred_images)
    labels = kmeans2.labels_
    sil.append(silhouette_score(pred_images, labels, metric =   ‘euclidean’))
    kl.append(k)

现在,我们将绘制图像:

plt.plot(kl, sil)
plt.ylabel(‘Silhoutte Score’)
plt.ylabel(‘K’)
plt.show()

如何利用K-Means将文件夹中图像进行分类?_第4张图片

如我们所见,K的最佳值为3,我们还成功创建了第三个集群:

如何利用K-Means将文件夹中图像进行分类?_第5张图片

结论

    

如我们所见,K-Means聚类是用于图像分离的出色算法。在某些时候,我们使用的方法可能无法提供准确的结果,我们可以尝试使用其他卷积神经网络对其进行修复,或者尝试将图像从BGR转换为RGB,然后进行处理。

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲

在「小白学视觉」公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲

在「小白学视觉」公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

你可能感兴趣的:(python,人工智能,计算机视觉,opencv,机器学习)