ORBSLAM2源码学习(10) Optimizer类

应该是到最后一个类了。。。先代码后总结。整体参考了网络上吴博大佬的注释,感谢!

#include "Optimizer.h"

#include "Thirdparty/g2o/g2o/core/block_solver.h"
#include "Thirdparty/g2o/g2o/core/optimization_algorithm_levenberg.h"
#include "Thirdparty/g2o/g2o/core/robust_kernel_impl.h"
#include "Thirdparty/g2o/g2o/solvers/linear_solver_eigen.h"
#include "Thirdparty/g2o/g2o/solvers/linear_solver_dense.h"
#include "Thirdparty/g2o/g2o/types/types_six_dof_expmap.h"
#include "Thirdparty/g2o/g2o/types/types_seven_dof_expmap.h"

#include
#include "Converter.h"
#include

namespace ORB_SLAM2
{

// 所有的MapPoints和关键帧做BA优化
// 全局BA优化在本程序中有两个地方使用:
// 单目初始化:CreateInitialMapMonocular函数
// 闭环优化:RunGlobalBundleAdjustment函数
void Optimizer::GlobalBundleAdjustemnt(Map* pMap, int nIterations, bool* pbStopFlag, const unsigned long nLoopKF, const bool bRobust)
{
    vector vpKFs = pMap->GetAllKeyFrames();
    vector vpMP = pMap->GetAllMapPoints();
    BundleAdjustment(vpKFs,vpMP,nIterations,pbStopFlag, nLoopKF, bRobust);
}

/** 
 * 3D-2D 最小化重投影误差 e = (u,v) - Tcw*Pw 2维
 * Vertex: g2o::VertexSE3Expmap(),当前帧的Tcw
 *         g2o::VertexSBAPointXYZ(),MapPoint的世界坐标
 * Edge:   g2o::EdgeSE3ProjectXYZ(),BaseBinaryEdge
 *          Vertex:待优化当前帧的Tcw
 *          Vertex:待优化MapPoint的mWorldPos
 *          measurement:MapPoint在当前帧中的像素坐标(u,v)
 *          InfoMatrix: invSigma2(与特征点所在的尺度有关)
 *          nIterations 迭代次数(20次)
 *          pbStopFlag  是否强制暂停
 *          nLoopKF  关键帧的个数
 *          bRobust  是否使用核函数
 */
void Optimizer::BundleAdjustment(const vector &vpKFs, const vector &vpMP,
                                 int nIterations, bool* pbStopFlag, const unsigned long nLoopKF, const bool bRobust)
{
    vector vbNotIncludedMP;
    vbNotIncludedMP.resize(vpMP.size());

    // 初始化g2o优化器
    g2o::SparseOptimizer optimizer;
    g2o::BlockSolver_6_3::LinearSolverType * linearSolver;

    linearSolver = new g2o::LinearSolverEigen();

    g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);

    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
    optimizer.setAlgorithm(solver);

    if(pbStopFlag)
        optimizer.setForceStopFlag(pbStopFlag);

    long unsigned int maxKFid = 0;

    // 向优化器添加顶点
    // Set KeyFrame vertices
    // 添加关键帧位姿顶点,所有的关键帧
    for(size_t i=0; iisBad())
            continue;
        g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
        vSE3->setEstimate(Converter::toSE3Quat(pKF->GetPose()));
        vSE3->setId(pKF->mnId);
        vSE3->setFixed(pKF->mnId==0);
        optimizer.addVertex(vSE3);
        if(pKF->mnId>maxKFid)
            maxKFid=pKF->mnId;
    }

    const float thHuber2D = sqrt(5.99);
    const float thHuber3D = sqrt(7.815);

    // Set MapPoint vertices
    // 添加MapPoints顶点,所有的地图点
    for(size_t i=0; iisBad())
            continue;
        g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
        vPoint->setEstimate(Converter::toVector3d(pMP->GetWorldPos()));
        const int id = pMP->mnId+maxKFid+1;
        vPoint->setId(id);
        vPoint->setMarginalized(true);
        optimizer.addVertex(vPoint);

        const map observations = pMP->GetObservations();

        int nEdges = 0;
        // SET EDGES
        // 优化器添加投影边
        for(map::const_iterator mit=observations.begin(); mit!=observations.end(); mit++)
        {

            KeyFrame* pKF = mit->first;
            if(pKF->isBad() || pKF->mnId>maxKFid)
                continue;

            nEdges++;

            const cv::KeyPoint &kpUn = pKF->mvKeysUn[mit->second];

            // 单目或RGBD相机
            if(pKF->mvuRight[mit->second]<0)
            {
                Eigen::Matrix obs;
                obs << kpUn.pt.x, kpUn.pt.y;

                g2o::EdgeSE3ProjectXYZ* e = new g2o::EdgeSE3ProjectXYZ();

                e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
                e->setVertex(1, dynamic_cast(optimizer.vertex(pKF->mnId)));
                e->setMeasurement(obs);
                const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
                e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);

                if(bRobust)
                {
                    g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
                    e->setRobustKernel(rk);
                    rk->setDelta(thHuber2D);
                }

                e->fx = pKF->fx;
                e->fy = pKF->fy;
                e->cx = pKF->cx;
                e->cy = pKF->cy;

                optimizer.addEdge(e);
            }
            else// 双目相机
            {
                Eigen::Matrix obs;
                const float kp_ur = pKF->mvuRight[mit->second];
                obs << kpUn.pt.x, kpUn.pt.y, kp_ur;

                g2o::EdgeStereoSE3ProjectXYZ* e = new g2o::EdgeStereoSE3ProjectXYZ();

                e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
                e->setVertex(1, dynamic_cast(optimizer.vertex(pKF->mnId)));
                e->setMeasurement(obs);
                const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
                Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
                e->setInformation(Info);

                if(bRobust)
                {
                    g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
                    e->setRobustKernel(rk);
                    rk->setDelta(thHuber3D);
                }

                e->fx = pKF->fx;
                e->fy = pKF->fy;
                e->cx = pKF->cx;
                e->cy = pKF->cy;
                e->bf = pKF->mbf;

                optimizer.addEdge(e);
            }
        }

        if(nEdges==0)
        {
            optimizer.removeVertex(vPoint);
            vbNotIncludedMP[i]=true;
        }
        else
        {
            vbNotIncludedMP[i]=false;
        }
    }

    // Optimize!
    // 开始优化
    optimizer.initializeOptimization();
    optimizer.optimize(nIterations);

    // Recover optimized data
    // 得到优化结果

    //Keyframes
    for(size_t i=0; iisBad())
            continue;
        g2o::VertexSE3Expmap* vSE3 = static_cast(optimizer.vertex(pKF->mnId));
        g2o::SE3Quat SE3quat = vSE3->estimate();
        if(nLoopKF==0)
        {
            pKF->SetPose(Converter::toCvMat(SE3quat));
        }
        else
        {
            pKF->mTcwGBA.create(4,4,CV_32F);
            Converter::toCvMat(SE3quat).copyTo(pKF->mTcwGBA);
            pKF->mnBAGlobalForKF = nLoopKF;
        }
    }

    //Points
    for(size_t i=0; iisBad())
            continue;
        g2o::VertexSBAPointXYZ* vPoint = static_cast(optimizer.vertex(pMP->mnId+maxKFid+1));

        if(nLoopKF==0)
        {
            pMP->SetWorldPos(Converter::toCvMat(vPoint->estimate()));
            pMP->UpdateNormalAndDepth();
        }
        else
        {
            pMP->mPosGBA.create(3,1,CV_32F);
            Converter::toCvMat(vPoint->estimate()).copyTo(pMP->mPosGBA);
            pMP->mnBAGlobalForKF = nLoopKF;
        }
    }

}
/** Pose Only Optimization
 * 3D-2D 最小化重投影误差 e = (u,v) - Tcw*Pw
 * 只优化Frame的Tcw,不优化MapPoints的坐标 
 *  Vertex: g2o::VertexSE3Expmap(),当前帧的Tcw
 *  Edge:
 *     - g2o::EdgeSE3ProjectXYZOnlyPose(),BaseUnaryEdge
 *         + Vertex:待优化当前帧的Tcw
 *         + measurement:MapPoint在当前帧中的二维位置(u,v)
 *         + InfoMatrix: invSigma2(与特征点所在的尺度有关)
 *     - g2o::EdgeStereoSE3ProjectXYZOnlyPose(),BaseUnaryEdge
 *         + Vertex:待优化当前帧的Tcw
 *         + measurement:MapPoint在当前帧中的二维位置(ul,v,ur)
 *         + InfoMatrix: invSigma2(与特征点所在的尺度有关)
 *  主要用于Tracking线程中:运动跟踪、参考帧跟踪、地图跟踪、重定位
 */
int Optimizer::PoseOptimization(Frame *pFrame)
{
    // 构造g2o优化器
    g2o::SparseOptimizer optimizer;
    g2o::BlockSolver_6_3::LinearSolverType * linearSolver;

    linearSolver = new g2o::LinearSolverDense();

    g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);

    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
    optimizer.setAlgorithm(solver);

    int nInitialCorrespondences=0;

    // Set Frame vertex
    // 添加顶点:待优化当前帧的Tcw
    g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
    vSE3->setEstimate(Converter::toSE3Quat(pFrame->mTcw));
    vSE3->setId(0);
    vSE3->setFixed(false);
    optimizer.addVertex(vSE3);

    // Set MapPoint vertices
    const int N = pFrame->N;

    // for Monocular
    vector vpEdgesMono;
    vector vnIndexEdgeMono;
    vpEdgesMono.reserve(N);
    vnIndexEdgeMono.reserve(N);

    // for Stereo
    vector vpEdgesStereo;
    vector vnIndexEdgeStereo;
    vpEdgesStereo.reserve(N);
    vnIndexEdgeStereo.reserve(N);

    const float deltaMono = sqrt(5.991);
    const float deltaStereo = sqrt(7.815);

    // 添加一元边:相机投影模型
    {
    unique_lock lock(MapPoint::mGlobalMutex);

    for(int i=0; imvpMapPoints[i];
        if(pMP)
        {
            // Monocular observation
            if(pFrame->mvuRight[i]<0)
            {
                nInitialCorrespondences++;
                pFrame->mvbOutlier[i] = false;

                Eigen::Matrix obs;
                const cv::KeyPoint &kpUn = pFrame->mvKeysUn[i];
                obs << kpUn.pt.x, kpUn.pt.y;

                g2o::EdgeSE3ProjectXYZOnlyPose* e = new g2o::EdgeSE3ProjectXYZOnlyPose();

                e->setVertex(0, dynamic_cast(optimizer.vertex(0)));
                e->setMeasurement(obs);
                const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
                e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);

                g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
                e->setRobustKernel(rk);
                rk->setDelta(deltaMono);

                e->fx = pFrame->fx;
                e->fy = pFrame->fy;
                e->cx = pFrame->cx;
                e->cy = pFrame->cy;
                cv::Mat Xw = pMP->GetWorldPos();
                e->Xw[0] = Xw.at(0);
                e->Xw[1] = Xw.at(1);
                e->Xw[2] = Xw.at(2);

                optimizer.addEdge(e);

                vpEdgesMono.push_back(e);
                vnIndexEdgeMono.push_back(i);
            }
            else  // Stereo observation 双目
            {
                nInitialCorrespondences++;
                pFrame->mvbOutlier[i] = false;

                //SET EDGE
                Eigen::Matrix obs;
                const cv::KeyPoint &kpUn = pFrame->mvKeysUn[i];
                const float &kp_ur = pFrame->mvuRight[i];
                obs << kpUn.pt.x, kpUn.pt.y, kp_ur;

                g2o::EdgeStereoSE3ProjectXYZOnlyPose* e = new g2o::EdgeStereoSE3ProjectXYZOnlyPose();

                e->setVertex(0, dynamic_cast(optimizer.vertex(0)));
                e->setMeasurement(obs);
                const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
                Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
                e->setInformation(Info);

                g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
                e->setRobustKernel(rk);
                rk->setDelta(deltaStereo);

                e->fx = pFrame->fx;
                e->fy = pFrame->fy;
                e->cx = pFrame->cx;
                e->cy = pFrame->cy;
                e->bf = pFrame->mbf;
                cv::Mat Xw = pMP->GetWorldPos();
                e->Xw[0] = Xw.at(0);
                e->Xw[1] = Xw.at(1);
                e->Xw[2] = Xw.at(2);

                optimizer.addEdge(e);

                vpEdgesStereo.push_back(e);
                vnIndexEdgeStereo.push_back(i);
            }
        }

    }
    }


    if(nInitialCorrespondences<3)
        return 0;

    // We perform 4 optimizations, after each optimization we classify observation as inlier/outlier
    // At the next optimization, outliers are not included, but at the end they can be classified as inliers again.
    // 开始优化,总共优化四次,每次优化后,将观测分为outlier和inlier,outlier不参与下次优化
    // 由于每次优化后是对所有的观测进行outlier和inlier判别,因此之前被判别为outlier有可能变成inlier,反之亦然
    const float chi2Mono[4]={5.991,5.991,5.991,5.991};
    const float chi2Stereo[4]={7.815,7.815,7.815, 7.815};
    const int its[4]={10,10,10,10};// 四次迭代,每次迭代的次数

    int nBad=0;
    for(size_t it=0; it<4; it++)
    {

        vSE3->setEstimate(Converter::toSE3Quat(pFrame->mTcw));
        optimizer.initializeOptimization(0);	// 对level为0的边进行优化
        optimizer.optimize(its[it]);

        nBad=0;
        for(size_t i=0, iend=vpEdgesMono.size(); imvbOutlier[idx])
            {
                e->computeError(); // NOTE g2o只会计算active edge的误差
            }

            const float chi2 = e->chi2();

            if(chi2>chi2Mono[it])
            {                
                pFrame->mvbOutlier[idx]=true;
                e->setLevel(1);                 // 设置为outlier
                nBad++;
            }
            else
            {
                pFrame->mvbOutlier[idx]=false;
                e->setLevel(0);                 // 设置为inlier
            }

            if(it==2)
                e->setRobustKernel(0); // 前两次优化需要RobustKernel, 其余的不需要
        }

        for(size_t i=0, iend=vpEdgesStereo.size(); imvbOutlier[idx])
            {
                e->computeError();
            }

            const float chi2 = e->chi2();

            if(chi2>chi2Stereo[it])
            {
                pFrame->mvbOutlier[idx]=true;
                e->setLevel(1);
                nBad++;
            }
            else
            {                
                e->setLevel(0);
                pFrame->mvbOutlier[idx]=false;
            }

            if(it==2)
                e->setRobustKernel(0);
        }

        if(optimizer.edges().size()<10)
            break;
    }    

    // Recover optimized pose and return number of inliers
    g2o::VertexSE3Expmap* vSE3_recov = static_cast(optimizer.vertex(0));
    g2o::SE3Quat SE3quat_recov = vSE3_recov->estimate();
    cv::Mat pose = Converter::toCvMat(SE3quat_recov);
    pFrame->SetPose(pose);

    return nInitialCorrespondences-nBad;	// inliers个数
}

/**  用于LocalMapping线程的局部BA优化
 * Vertex:
 *     - g2o::VertexSE3Expmap(),局部图,当前关键帧、与当前关键帧相连的关键帧的位姿
 *     - g2o::VertexSE3Expmap(),即能观测到局部地图点的关键帧(并且不属于LocalKeyFrames)的位姿,在优化中这些关键帧的位姿不变
 *     - g2o::VertexSBAPointXYZ(),局部地图点,即局部图能观测到的所有地图点的位置
 * Edge:
 *     - g2o::EdgeSE3ProjectXYZ(),BaseBinaryEdge
 *         + Vertex:关键帧的Tcw,MapPoint的Pw
 *         + measurement:地图点在关键帧中的二维位置(u,v)
 *         + InfoMatrix: invSigma2
 *     - g2o::EdgeStereoSE3ProjectXYZ(),BaseBinaryEdge
 *         + Vertex:关键帧的Tcw,MapPoint的Pw
 *         + measurement:地图点在关键帧中的二维位置(ul,v,ur)
 *         + InfoMatrix: invSigma2  */
void Optimizer::LocalBundleAdjustment(KeyFrame *pKF, bool* pbStopFlag, Map* pMap)
{
    // Local KeyFrames: First Breadth Search from Current Keyframe
    list lLocalKeyFrames;

    // 将当前关键帧加入lLocalKeyFrames
    lLocalKeyFrames.push_back(pKF);
    pKF->mnBALocalForKF = pKF->mnId;

    // 找到关键帧一级连接的关键帧,加入lLocalKeyFrames中
    const vector vNeighKFs = pKF->GetVectorCovisibleKeyFrames();
    for(int i=0, iend=vNeighKFs.size(); imnBALocalForKF = pKF->mnId;
        if(!pKFi->isBad())
            lLocalKeyFrames.push_back(pKFi);
    }

    // Local MapPoints seen in Local KeyFrames
    // 遍历lLocalKeyFrames中关键帧,将它们观测的地图点加入到lLocalMapPoints
    list lLocalMapPoints;
    for(list::iterator lit=lLocalKeyFrames.begin() , lend=lLocalKeyFrames.end(); lit!=lend; lit++)
    {
        vector vpMPs = (*lit)->GetMapPointMatches();
        for(vector::iterator vit=vpMPs.begin(), vend=vpMPs.end(); vit!=vend; vit++)
        {
            MapPoint* pMP = *vit;
            if(pMP)
            {
                if(!pMP->isBad())
                    if(pMP->mnBALocalForKF!=pKF->mnId)
                    {
                        lLocalMapPoints.push_back(pMP);
                        pMP->mnBALocalForKF=pKF->mnId;	// 防止重复添加
                    }
            }
        }
    }

    // Fixed Keyframes. Keyframes that see Local MapPoints but that are not Local Keyframes
    // 得到能被局部MapPoints观测到,但不属于局部关键帧的关键帧,这些关键帧在局部BA优化时不优化
    list lFixedCameras;
    for(list::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
    {
        map observations = (*lit)->GetObservations();
        for(map::iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
        {
            KeyFrame* pKFi = mit->first;

            // 其它的关键帧虽然能观测到,但不属于局部关键帧(lLocalKeyFrames)
            if(pKFi->mnBALocalForKF!=pKF->mnId && pKFi->mnBAFixedForKF!=pKF->mnId)
            {                
                pKFi->mnBAFixedForKF=pKF->mnId;// 防止重复添加
                if(!pKFi->isBad())
                    lFixedCameras.push_back(pKFi);
            }
        }
    }

    // Setup optimizer
    g2o::SparseOptimizer optimizer;
    g2o::BlockSolver_6_3::LinearSolverType * linearSolver;

    linearSolver = new g2o::LinearSolverEigen();

    g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);

    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
    optimizer.setAlgorithm(solver);

    if(pbStopFlag)
        optimizer.setForceStopFlag(pbStopFlag);

    unsigned long maxKFid = 0;

    // Set Local KeyFrame vertices
    // 添加顶点:Pose of Local KeyFrame
    for(list::iterator lit=lLocalKeyFrames.begin(), lend=lLocalKeyFrames.end(); lit!=lend; lit++)
    {
        KeyFrame* pKFi = *lit;
        g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
        vSE3->setEstimate(Converter::toSE3Quat(pKFi->GetPose()));
        vSE3->setId(pKFi->mnId);
        vSE3->setFixed(pKFi->mnId==0);	//第一帧位置固定
        optimizer.addVertex(vSE3);
        if(pKFi->mnId>maxKFid)
            maxKFid=pKFi->mnId;
    }

    // Set Fixed KeyFrame vertices
    // 添加顶点:Pose of Fixed KeyFrame,vSE3->setFixed(true)。
    for(list::iterator lit=lFixedCameras.begin(), lend=lFixedCameras.end(); lit!=lend; lit++)
    {
        KeyFrame* pKFi = *lit;
        g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
        vSE3->setEstimate(Converter::toSE3Quat(pKFi->GetPose()));
        vSE3->setId(pKFi->mnId);
        vSE3->setFixed(true);
        optimizer.addVertex(vSE3);
        if(pKFi->mnId>maxKFid)
            maxKFid=pKFi->mnId;
    }

    // Set MapPoint vertices
    // 添加3D顶点
    const int nExpectedSize = (lLocalKeyFrames.size()+lFixedCameras.size())*lLocalMapPoints.size();

    vector vpEdgesMono;
    vpEdgesMono.reserve(nExpectedSize);

    vector vpEdgeKFMono;
    vpEdgeKFMono.reserve(nExpectedSize);

    vector vpMapPointEdgeMono;
    vpMapPointEdgeMono.reserve(nExpectedSize);

    vector vpEdgesStereo;
    vpEdgesStereo.reserve(nExpectedSize);

    vector vpEdgeKFStereo;
    vpEdgeKFStereo.reserve(nExpectedSize);

    vector vpMapPointEdgeStereo;
    vpMapPointEdgeStereo.reserve(nExpectedSize);

    const float thHuberMono = sqrt(5.991);
    const float thHuberStereo = sqrt(7.815);

    for(list::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
    {
        // 添加顶点:MapPoint
        MapPoint* pMP = *lit;
        g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
        vPoint->setEstimate(Converter::toVector3d(pMP->GetWorldPos()));
        int id = pMP->mnId+maxKFid+1;
        vPoint->setId(id);
        vPoint->setMarginalized(true);
        optimizer.addVertex(vPoint);

        const map observations = pMP->GetObservations();

        // Set edges
        // 对每一对关联的地图点和KeyFrame构建边
        for(map::const_iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
        {
            KeyFrame* pKFi = mit->first;

            if(!pKFi->isBad())
            {                
                const cv::KeyPoint &kpUn = pKFi->mvKeysUn[mit->second];

                // Monocular observation
                if(pKFi->mvuRight[mit->second]<0)
                {
                    Eigen::Matrix obs;
                    obs << kpUn.pt.x, kpUn.pt.y;

                    g2o::EdgeSE3ProjectXYZ* e = new g2o::EdgeSE3ProjectXYZ();

                    e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
                    e->setVertex(1, dynamic_cast(optimizer.vertex(pKFi->mnId)));
                    e->setMeasurement(obs);
                    const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
                    e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);

                    g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
                    e->setRobustKernel(rk);
                    rk->setDelta(thHuberMono);

                    e->fx = pKFi->fx;
                    e->fy = pKFi->fy;
                    e->cx = pKFi->cx;
                    e->cy = pKFi->cy;

                    optimizer.addEdge(e);
                    vpEdgesMono.push_back(e);
                    vpEdgeKFMono.push_back(pKFi);
                    vpMapPointEdgeMono.push_back(pMP);
                }
                else // Stereo observation
                {
                    Eigen::Matrix obs;
                    const float kp_ur = pKFi->mvuRight[mit->second];
                    obs << kpUn.pt.x, kpUn.pt.y, kp_ur;

                    g2o::EdgeStereoSE3ProjectXYZ* e = new g2o::EdgeStereoSE3ProjectXYZ();

                    e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
                    e->setVertex(1, dynamic_cast(optimizer.vertex(pKFi->mnId)));
                    e->setMeasurement(obs);
                    const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
                    Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
                    e->setInformation(Info);

                    g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
                    e->setRobustKernel(rk);
                    rk->setDelta(thHuberStereo);

                    e->fx = pKFi->fx;
                    e->fy = pKFi->fy;
                    e->cx = pKFi->cx;
                    e->cy = pKFi->cy;
                    e->bf = pKFi->mbf;

                    optimizer.addEdge(e);
                    vpEdgesStereo.push_back(e);
                    vpEdgeKFStereo.push_back(pKFi);
                    vpMapPointEdgeStereo.push_back(pMP);
                }
            }
        }
    }

    if(pbStopFlag)
        if(*pbStopFlag)
            return;

    optimizer.initializeOptimization();
    optimizer.optimize(5);

    bool bDoMore= true;

    if(pbStopFlag)
        if(*pbStopFlag)
            bDoMore = false;

    if(bDoMore)
    {
		// Check inlier observations
		// 检测outlier,并设置下次不优化
		for(size_t i=0, iend=vpEdgesMono.size(); iisBad())
				continue;

			if(e->chi2()>5.991 || !e->isDepthPositive())
			{
				e->setLevel(1);// 不优化
			}

			e->setRobustKernel(0);// 不使用核函数
		}

		for(size_t i=0, iend=vpEdgesStereo.size(); iisBad())
				continue;

			if(e->chi2()>7.815 || !e->isDepthPositive())
			{
				e->setLevel(1);
			}

			e->setRobustKernel(0);
		}

		// Optimize again without the outliers
		// 排除误差较大的outlier后再次优化
		optimizer.initializeOptimization(0);
		optimizer.optimize(10);
    }

    vector > vToErase;
    vToErase.reserve(vpEdgesMono.size()+vpEdgesStereo.size());

    // Check inlier observations
    // 优化后重新计算误差,剔除连接误差比较大的关键帧和地图点
    for(size_t i=0, iend=vpEdgesMono.size(); iisBad())
            continue;

        if(e->chi2()>5.991 || !e->isDepthPositive())
        {
            KeyFrame* pKFi = vpEdgeKFMono[i];
            vToErase.push_back(make_pair(pKFi,pMP));
        }
    }

    for(size_t i=0, iend=vpEdgesStereo.size(); iisBad())
            continue;

        if(e->chi2()>7.815 || !e->isDepthPositive())
        {
            KeyFrame* pKFi = vpEdgeKFStereo[i];
            vToErase.push_back(make_pair(pKFi,pMP));
        }
    }

    // Get Map Mutex
    unique_lock lock(pMap->mMutexMapUpdate);

    // 偏差比较大,在关键帧中剔除对该地图点的观测
    // 在地图点中剔除对该关键帧的观测
    if(!vToErase.empty())
    {
        for(size_t i=0;iEraseMapPointMatch(pMPi);
            pMPi->EraseObservation(pKFi);
        }
    }

    // Recover optimized data
    // 优化后更新关键帧位姿以及MapPoints的位置、平均观测方向等属性
    //Keyframes
    for(list::iterator lit=lLocalKeyFrames.begin(), lend=lLocalKeyFrames.end(); lit!=lend; lit++)
    {
        KeyFrame* pKF = *lit;
        g2o::VertexSE3Expmap* vSE3 = static_cast(optimizer.vertex(pKF->mnId));
        g2o::SE3Quat SE3quat = vSE3->estimate();
        pKF->SetPose(Converter::toCvMat(SE3quat));
    }

    //Points
    for(list::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
    {
        MapPoint* pMP = *lit;
        g2o::VertexSBAPointXYZ* vPoint = static_cast(optimizer.vertex(pMP->mnId+maxKFid+1));
        pMP->SetWorldPos(Converter::toCvMat(vPoint->estimate()));
        pMP->UpdateNormalAndDepth();
    }
}

/** 闭环检测后,EssentialGraph优化
 *  Vertex:
 *     - g2o::VertexSim3Expmap,Essential graph中关键帧的位姿
 *  Edge:
 *     - g2o::EdgeSim3(),BaseBinaryEdge
 *         + Vertex:关键帧的Tcw,MapPoint的Pw
 *         + measurement:经过CorrectLoop函数Sim3传播校正后的位姿
 *         + InfoMatrix: 单位矩阵     
 */
void Optimizer::OptimizeEssentialGraph(Map* pMap, KeyFrame* pLoopKF, KeyFrame* pCurKF,
                                       const LoopClosing::KeyFrameAndPose &NonCorrectedSim3,
                                       const LoopClosing::KeyFrameAndPose &CorrectedSim3,
                                       const map > &LoopConnections, const bool &bFixScale)
{
    // Setup optimizer
    g2o::SparseOptimizer optimizer;
    optimizer.setVerbose(false); 
	// 这里是7x3
    g2o::BlockSolver_7_3::LinearSolverType * linearSolver =
           new g2o::LinearSolverEigen();
    g2o::BlockSolver_7_3 * solver_ptr= new g2o::BlockSolver_7_3(linearSolver);
    // 使用LM算法进行非线性迭代
    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);

    solver->setUserLambdaInit(1e-16);
    optimizer.setAlgorithm(solver);

    const vector vpKFs = pMap->GetAllKeyFrames();
    const vector vpMPs = pMap->GetAllMapPoints();

    const unsigned int nMaxKFid = pMap->GetMaxKFid();

    // 经过Sim3传播调整,未经过优化的keyframe的pose
    vector > vScw(nMaxKFid+1);
    // 经过Sim3传播调整,经过优化的keyframe的pose
    vector > vCorrectedSwc(nMaxKFid+1);
    vector vpVertices(nMaxKFid+1);

    const int minFeat = 100;

    // Set KeyFrame vertices
    // 将地图中所有keyframe的pose作为顶点添加到优化器
    // 尽可能使用经过Sim3调整的位姿
    for(size_t i=0, iend=vpKFs.size(); iisBad())
            continue;
        g2o::VertexSim3Expmap* VSim3 = new g2o::VertexSim3Expmap();

        const int nIDi = pKF->mnId;

        LoopClosing::KeyFrameAndPose::const_iterator it = CorrectedSim3.find(pKF);

        // 如果该关键帧在闭环时通过Sim3传播调整过,用校正后的位姿
        if(it!=CorrectedSim3.end())
        {
            vScw[nIDi] = it->second;
            VSim3->setEstimate(it->second);
        }
        else	// 如果没有通过Sim3传播调整过,用自身的位姿
        {
            Eigen::Matrix Rcw = Converter::toMatrix3d(pKF->GetRotation());
            Eigen::Matrix tcw = Converter::toVector3d(pKF->GetTranslation());
            g2o::Sim3 Siw(Rcw,tcw,1.0);
            vScw[nIDi] = Siw;
            VSim3->setEstimate(Siw);
        }

        // 闭环匹配上的帧不进行位姿优化
        if(pKF==pLoopKF)
            VSim3->setFixed(true);

        VSim3->setId(nIDi);
        VSim3->setMarginalized(false);
        VSim3->_fix_scale = bFixScale;

        optimizer.addVertex(VSim3);

        vpVertices[nIDi]=VSim3;
    }


    set > sInsertedEdges;

    const Eigen::Matrix matLambda = Eigen::Matrix::Identity();

    // Set Loop edges
    // 添加边:LoopConnections是闭环时因为地图点调整而出现的新关键帧连接关系
    for(map >::const_iterator mit = LoopConnections.begin(), mend=LoopConnections.end(); mit!=mend; mit++)
    {
        KeyFrame* pKF = mit->first;
        const long unsigned int nIDi = pKF->mnId;
        const set &spConnections = mit->second;
        const g2o::Sim3 Siw = vScw[nIDi];
        const g2o::Sim3 Swi = Siw.inverse();

        for(set::const_iterator sit=spConnections.begin(), send=spConnections.end(); sit!=send; sit++)
        {
            const long unsigned int nIDj = (*sit)->mnId;
            if((nIDi!=pCurKF->mnId || nIDj!=pLoopKF->mnId) && pKF->GetWeight(*sit)setVertex(1, dynamic_cast(optimizer.vertex(nIDj)));
            e->setVertex(0, dynamic_cast(optimizer.vertex(nIDi)));
            e->setMeasurement(Sji);

            e->information() = matLambda;

            optimizer.addEdge(e);

            sInsertedEdges.insert(make_pair(min(nIDi,nIDj),max(nIDi,nIDj)));
        }
    }

    // Set normal edges
    // 添加跟踪时形成的边、闭环匹配成功形成的边
    for(size_t i=0, iend=vpKFs.size(); imnId;

        g2o::Sim3 Swi;

        LoopClosing::KeyFrameAndPose::const_iterator iti = NonCorrectedSim3.find(pKF);

        // 尽可能得到未经过Sim3传播调整的位姿
        if(iti!=NonCorrectedSim3.end())
            Swi = (iti->second).inverse();
        else
            Swi = vScw[nIDi].inverse();

        KeyFrame* pParentKF = pKF->GetParent();

        // Spanning tree edge
        // 只添加扩展树的边(有父关键帧)
        if(pParentKF)
        {
            int nIDj = pParentKF->mnId;

            g2o::Sim3 Sjw;

            LoopClosing::KeyFrameAndPose::const_iterator itj = NonCorrectedSim3.find(pParentKF);

            // 尽可能得到未经过Sim3传播调整的位姿
            if(itj!=NonCorrectedSim3.end())
                Sjw = itj->second;
            else
                Sjw = vScw[nIDj];

            g2o::Sim3 Sji = Sjw * Swi;

            g2o::EdgeSim3* e = new g2o::EdgeSim3();
            e->setVertex(1, dynamic_cast(optimizer.vertex(nIDj)));
            e->setVertex(0, dynamic_cast(optimizer.vertex(nIDi)));
            e->setMeasurement(Sji);

            e->information() = matLambda;
            optimizer.addEdge(e);
        }

        // Loop edges
        // 步添加在CorrectLoop函数中AddLoopEdge函数添加的闭环连接边(当前帧与闭环匹配帧之间的连接关系)
        // 使用经过Sim3调整前关键帧之间的相对关系作为边
        const set sLoopEdges = pKF->GetLoopEdges();
        for(set::const_iterator sit=sLoopEdges.begin(), send=sLoopEdges.end(); sit!=send; sit++)
        {
            KeyFrame* pLKF = *sit;
            if(pLKF->mnIdmnId)
            {
                g2o::Sim3 Slw;

                LoopClosing::KeyFrameAndPose::const_iterator itl = NonCorrectedSim3.find(pLKF);

                // 尽可能得到未经过Sim3传播调整的位姿
                if(itl!=NonCorrectedSim3.end())
                    Slw = itl->second;
                else
                    Slw = vScw[pLKF->mnId];

                g2o::Sim3 Sli = Slw * Swi;
                g2o::EdgeSim3* el = new g2o::EdgeSim3();
                el->setVertex(1, dynamic_cast(optimizer.vertex(pLKF->mnId)));
                el->setVertex(0, dynamic_cast(optimizer.vertex(nIDi)));
                el->setMeasurement(Sli);
                el->information() = matLambda;
                optimizer.addEdge(el);
            }
        }

        // Covisibility graph edges
        // 有很好共视关系的关键帧也作为边进行优化
        // 使用经过Sim3调整前关键帧之间的相对关系作为边
        const vector vpConnectedKFs = pKF->GetCovisiblesByWeight(minFeat);
        for(vector::const_iterator vit=vpConnectedKFs.begin(); vit!=vpConnectedKFs.end(); vit++)
        {
            KeyFrame* pKFn = *vit;
            if(pKFn && pKFn!=pParentKF && !pKF->hasChild(pKFn) && !sLoopEdges.count(pKFn))
            {
                if(!pKFn->isBad() && pKFn->mnIdmnId)
                {
                    if(sInsertedEdges.count(make_pair(min(pKF->mnId,pKFn->mnId),max(pKF->mnId,pKFn->mnId))))
                        continue;

                    g2o::Sim3 Snw;

                    LoopClosing::KeyFrameAndPose::const_iterator itn = NonCorrectedSim3.find(pKFn);

                    // 尽可能得到未经过Sim3传播调整的位姿
                    if(itn!=NonCorrectedSim3.end())
                        Snw = itn->second;
                    else
                        Snw = vScw[pKFn->mnId];

                    g2o::Sim3 Sni = Snw * Swi;

                    g2o::EdgeSim3* en = new g2o::EdgeSim3();
                    en->setVertex(1, dynamic_cast(optimizer.vertex(pKFn->mnId)));
                    en->setVertex(0, dynamic_cast(optimizer.vertex(nIDi)));
                    en->setMeasurement(Sni);
                    en->information() = matLambda;
                    optimizer.addEdge(en);
                }
            }
        }
    }

    // Optimize!
    optimizer.initializeOptimization();
    optimizer.optimize(20);

    unique_lock lock(pMap->mMutexMapUpdate);

    // SE3 Pose Recovering. Sim3:[sR t;0 1] -> SE3:[R t/s;0 1]
    // 设定优化后的位姿
    for(size_t i=0;imnId;

        g2o::VertexSim3Expmap* VSim3 = static_cast(optimizer.vertex(nIDi));
        g2o::Sim3 CorrectedSiw =  VSim3->estimate();
        vCorrectedSwc[nIDi]=CorrectedSiw.inverse();
        Eigen::Matrix3d eigR = CorrectedSiw.rotation().toRotationMatrix();
        Eigen::Vector3d eigt = CorrectedSiw.translation();
        double s = CorrectedSiw.scale();

        eigt *=(1./s); //[R t/s;0 1]

        cv::Mat Tiw = Converter::toCvSE3(eigR,eigt);

        pKFi->SetPose(Tiw);
    }

    // Correct points. Transform to "non-optimized" reference keyframe pose and transform back with optimized pose
    // 优化得到关键帧的位姿后,地图点根据参考帧优化前后的相对关系调整自己的位置
    for(size_t i=0, iend=vpMPs.size(); iisBad())
            continue;

        int nIDr;
        // 该地图点经过Sim3调整过
        if(pMP->mnCorrectedByKF==pCurKF->mnId)
        {
            nIDr = pMP->mnCorrectedReference;
        }
        else
        {
            KeyFrame* pRefKF = pMP->GetReferenceKeyFrame();
            nIDr = pRefKF->mnId;
        }

        // 得到地图点参考关键帧优化前的位姿
        g2o::Sim3 Srw = vScw[nIDr];
        // 得到地图点参考关键帧优化后的位姿
        g2o::Sim3 correctedSwr = vCorrectedSwc[nIDr];

        cv::Mat P3Dw = pMP->GetWorldPos();
        Eigen::Matrix eigP3Dw = Converter::toVector3d(P3Dw);
        Eigen::Matrix eigCorrectedP3Dw = correctedSwr.map(Srw.map(eigP3Dw));

        cv::Mat cvCorrectedP3Dw = Converter::toCvMat(eigCorrectedP3Dw);
        pMP->SetWorldPos(cvCorrectedP3Dw);

        pMP->UpdateNormalAndDepth();
    }
}

/** 形成闭环时进行Sim3优化
 *  Vertex:
 *     - g2o::VertexSim3Expmap(),两个关键帧的位姿
 *     - g2o::VertexSBAPointXYZ(),两个关键帧共有的地图点
 *  Edge:
 *     - g2o::EdgeSim3ProjectXYZ(),BaseBinaryEdge
 *         + Vertex:关键帧的Sim3,MapPoint的Pw
 *         + measurement:MapPoint在关键帧中的二维位置(u,v)
 *         + InfoMatrix: invSigma2(与特征点所在的尺度有关)
 *     - g2o::EdgeInverseSim3ProjectXYZ(),BaseBinaryEdge
 *         + Vertex:关键帧的Sim3,MapPoint的Pw
 *         + measurement:MapPoint在关键帧中的二维位置(u,v)
 *         + InfoMatrix: invSigma2(与特征点所在的尺度有关)
 *  g2oS12      两个关键帧间的Sim3变换
 *  th2         核函数阈值
 *  bFixScale   单目进行尺度优化,双目不进行尺度优化
 */
int Optimizer::OptimizeSim3(KeyFrame *pKF1, KeyFrame *pKF2, vector &vpMatches1, g2o::Sim3 &g2oS12, const float th2, const bool bFixScale)
{
    g2o::SparseOptimizer optimizer;

    g2o::BlockSolverX::LinearSolverType * linearSolver;
    linearSolver = new g2o::LinearSolverDense();
    g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);

    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
    optimizer.setAlgorithm(solver);

    // Calibration
    const cv::Mat &K1 = pKF1->mK;
    const cv::Mat &K2 = pKF2->mK;

    // Camera poses
    const cv::Mat R1w = pKF1->GetRotation();
    const cv::Mat t1w = pKF1->GetTranslation();
    const cv::Mat R2w = pKF2->GetRotation();
    const cv::Mat t2w = pKF2->GetTranslation();

    // Set Sim3 vertex
    // 添加Sim3顶点
    g2o::VertexSim3Expmap * vSim3 = new g2o::VertexSim3Expmap();    
    vSim3->_fix_scale=bFixScale;
    vSim3->setEstimate(g2oS12);
    vSim3->setId(0);
    vSim3->setFixed(false);		// 优化Sim3顶点
    vSim3->_principle_point1[0] = K1.at(0,2); 	// 光心横坐标cx
    vSim3->_principle_point1[1] = K1.at(1,2); 	// 光心纵坐标cy
    vSim3->_focal_length1[0] = K1.at(0,0); 		// 焦距 fx
    vSim3->_focal_length1[1] = K1.at(1,1); 		// 焦距 fy
    vSim3->_principle_point2[0] = K2.at(0,2);
    vSim3->_principle_point2[1] = K2.at(1,2);
    vSim3->_focal_length2[0] = K2.at(0,0);
    vSim3->_focal_length2[1] = K2.at(1,1);
    optimizer.addVertex(vSim3);

    // Set MapPoint vertices
    const int N = vpMatches1.size();
    const vector vpMapPoints1 = pKF1->GetMapPointMatches();

    vector vpEdges12; 
    vector vpEdges21; 
    vector vnIndexEdge;

    vnIndexEdge.reserve(2*N);
    vpEdges12.reserve(2*N);
    vpEdges21.reserve(2*N);

    const float deltaHuber = sqrt(th2);

    int nCorrespondences = 0;

    for(int i=0; iGetIndexInKeyFrame(pKF2);

        if(pMP1 && pMP2)
        {
            if(!pMP1->isBad() && !pMP2->isBad() && i2>=0)
            {
                // 添加PointXYZ顶点
                g2o::VertexSBAPointXYZ* vPoint1 = new g2o::VertexSBAPointXYZ();
                cv::Mat P3D1w = pMP1->GetWorldPos();
                cv::Mat P3D1c = R1w*P3D1w + t1w;
                vPoint1->setEstimate(Converter::toVector3d(P3D1c));
                vPoint1->setId(id1);
                vPoint1->setFixed(true);
                optimizer.addVertex(vPoint1);

                g2o::VertexSBAPointXYZ* vPoint2 = new g2o::VertexSBAPointXYZ();
                cv::Mat P3D2w = pMP2->GetWorldPos();
                cv::Mat P3D2c = R2w*P3D2w + t2w;
                vPoint2->setEstimate(Converter::toVector3d(P3D2c));
                vPoint2->setId(id2);
                vPoint2->setFixed(true);
                optimizer.addVertex(vPoint2);
            }
            else
                continue;
        }
        else
            continue;

        nCorrespondences++;

        // Set edge x1 = S12*X2
        Eigen::Matrix obs1;
        const cv::KeyPoint &kpUn1 = pKF1->mvKeysUn[i];
        obs1 << kpUn1.pt.x, kpUn1.pt.y;

        // 添加两个顶点(3D点)到相机投影的边
        g2o::EdgeSim3ProjectXYZ* e12 = new g2o::EdgeSim3ProjectXYZ();
        e12->setVertex(0, dynamic_cast(optimizer.vertex(id2)));
        e12->setVertex(1, dynamic_cast(optimizer.vertex(0)));
        e12->setMeasurement(obs1);
        const float &invSigmaSquare1 = pKF1->mvInvLevelSigma2[kpUn1.octave];
        e12->setInformation(Eigen::Matrix2d::Identity()*invSigmaSquare1);

        g2o::RobustKernelHuber* rk1 = new g2o::RobustKernelHuber;
        e12->setRobustKernel(rk1);
        rk1->setDelta(deltaHuber);
        optimizer.addEdge(e12);

        // Set edge x2 = S21*X1
        Eigen::Matrix obs2;
        const cv::KeyPoint &kpUn2 = pKF2->mvKeysUn[i2];
        obs2 << kpUn2.pt.x, kpUn2.pt.y;

        g2o::EdgeInverseSim3ProjectXYZ* e21 = new g2o::EdgeInverseSim3ProjectXYZ();

        e21->setVertex(0, dynamic_cast(optimizer.vertex(id1)));
        e21->setVertex(1, dynamic_cast(optimizer.vertex(0)));
        e21->setMeasurement(obs2);
        float invSigmaSquare2 = pKF2->mvInvLevelSigma2[kpUn2.octave];
        e21->setInformation(Eigen::Matrix2d::Identity()*invSigmaSquare2);

        g2o::RobustKernelHuber* rk2 = new g2o::RobustKernelHuber;
        e21->setRobustKernel(rk2);
        rk2->setDelta(deltaHuber);
        optimizer.addEdge(e21);

        vpEdges12.push_back(e12);
        vpEdges21.push_back(e21);
        vnIndexEdge.push_back(i);
    }

    // Optimize!
    // 开始优化,先迭代5次
    optimizer.initializeOptimization();
    optimizer.optimize(5);

    // 剔除一些误差大的边
    // Check inliers
    int nBad=0;
    for(size_t i=0; ichi2()>th2 || e21->chi2()>th2)
        {
            size_t idx = vnIndexEdge[i];
            vpMatches1[idx]=static_cast(NULL);
            optimizer.removeEdge(e12);
            optimizer.removeEdge(e21);
            vpEdges12[i]=static_cast(NULL);
            vpEdges21[i]=static_cast(NULL);
            nBad++;
        }
    }

    int nMoreIterations;
    if(nBad>0)
        nMoreIterations=10;
    else
        nMoreIterations=5;

    if(nCorrespondences-nBad<10)
        return 0;

    // Optimize again only with inliers
    // 再次优化剔除后剩下的边
    optimizer.initializeOptimization();
    optimizer.optimize(nMoreIterations);

    int nIn = 0;
    for(size_t i=0; ichi2()>th2 || e21->chi2()>th2)
        {
            size_t idx = vnIndexEdge[i];
            vpMatches1[idx]=static_cast(NULL);
        }
        else
            nIn++;
    }

    // Recover optimized Sim3
    g2o::VertexSim3Expmap* vSim3_recov = static_cast(optimizer.vertex(0));
    g2oS12= vSim3_recov->estimate();

    return nIn;
}
} //namespace ORB_SLAM

1、void Optimizer::BundleAdjustment(const vector &vpKFs, const vector &vpMP,

                                 int nIterations, bool* pbStopFlag, const unsigned long nLoopKF, const bool bRobust);

  • 在Optimizer::GlobalBundleAdjustemnt()函数中调用,对所有的地图点和关键帧做优化,将3D点投影至图像平面优化投影误差
  • 初始化g2o优化器,添加所有的关键帧位姿作为顶点,所有的地图点作为顶点,同时对每一个地图点获取其观测信息,之后建立点-关键帧之间的投影关系作为优化器的边

2、int Optimizer::PoseOptimization(Frame *pFrame); 只优化当前帧的位姿,地图点固定

  • 总共优化四次,每次优化后,将观测分为outlier和inlier,outlier不参与下次优化, 每次优化后再对所有的观测进行outlier和inlier判别,因此之前被判别为outlier有可能变成inlier,反之亦然

3、void Optimizer::LocalBundleAdjustment(KeyFrame *pKF, bool* pbStopFlag, Map* pMap);局部优化

  • 将当前关键帧及其共视帧加入lLocalKeyFrames链表中,遍历这些关键帧,将其所有观测到的地图点加入lLocalMapPoints链表中
  • 遍历lLocalMapPoints,对每一个地图点获取能观测到该点的关键帧,对这些帧中不属于上一步lLocalKeyFrames的帧设为Fixed,即在BA优化中不对其进行优化,变量为lFixedCameras
  • 添加顶点:局部图中的关键帧设置为优化,第一帧不优化;lFixedCameras中的关键帧设置为顶点,不优化;局部地图点设置为顶点,优化,获取能观测到该点的关键帧,对地图点和关键帧构建边。开始优化
  • 优化后检测outlier,对outlier设置不优化,之后再进行一次优化
  • 优化后重新计算误差,剔除掉连接误差较大的关键帧和地图点
  • 更新优化后的关键帧位姿,地图点的位置、平均观测方向等属性

       最后俩函数都有点地方不太明白,回头弄懂了再补充吧。总的下来花了挺长时间看这份代码的,感觉代码还是比较清晰,熟悉了变量命名规则并且多看些函数后,发现很多地方思路都比较相似。然而最重要的是理解为什么那么做才行。。。这点还需要花时间多多实践才行,接下来应该是花点时间整理下这份代码,梳理下部分逻辑,函数之间的调用关系。

你可能感兴趣的:(SLAM研究,SLAM)