CGB2108-Day18

进程与线程
1 进程
1.1 进程的概念
进程就是正在运行的程序,它会占用对应的内存区域,由CPU进行执行与计算。

1.2 进程的特点
独立性
进程是系统中独立存在的实体,它可以拥有自己独立的资源,每个进程都拥有自己私有的地址空间,在没有经过进程本身允许的情况下,一个用户进程不可以直接访问其他进程的地址空间
动态性
进程与程序的区别在于,程序只是一个静态的指令集合,而进程是一个正在系统中活动的指令集合,程序加入了时间的概念以后,称为进程,具有自己的生命周期和各种不同的状态,这些概念都是程序所不具备的.
并发性
多个进程可以在单个处理器CPU上并发执行,多个进程之间不会互相影响.
2 线程
2.1 线程的概念
线程是操作系统OS能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位.
一个进程可以开启多个线程,其中有一个主线程来调用本进程中的其他线程。
我们看到的进程的切换,切换的也是不同进程的主线程
多线程可以让同一个进程同时并发处理多个任务,相当于扩展了进程的功能。

2.2 进程与线程的关系
一个操作系统中可以有多个进程,一个进程中可以包含一个线程(单线程程序),也可以包含多个线程(多线程程序)

每个线程在共享同一个进程中的内存的同时,又有自己独立的内存空间.
所以想使用线程技术,得先有进程,进程的创建是OS操作系统来创建的,一般都是C或者C++完成

3 多线程的特性
3.1 随机性
我们宏观上觉得多个进程是同时运行的,但实际的微观层面上,一个CPU【单核】只能执行一个进程中的一个线程。
宏观层面上,所有的进程看似并行【同时运行】,但是微观层面上是串行的【同一时刻,一个CPU只能处理一件事】。
 

串行与并行

串行是指同一时刻一个CPU只能处理一件事,类似于单车道
并行是指同一时刻多个CPU可以处理多件事,类似于多车道CGB2108-Day18_第1张图片

CGB2108-Day18_第2张图片

3.2 CPU分时调度
时间片,即CPU分配给各个线程的一个时间段,称作它的时间片,即该线程被允许运行的时间,如果在时间片用完时线程还在执行,那CPU将被剥夺并分配给另一个线程,将当前线程挂起,如果线程在时间片用完之前阻塞或结束,则CPU当即进行切换,从而避免CPU资源浪费,当再次切换到之前挂起的线程,恢复现场,继续执行。
注意:我们无法控制OS选择执行哪些线程,OS底层有自己规则,如:

FCFS(First Come First Service 先来先服务算法)
SJS(Short Job Service短服务算法)

3.3 线程的状态
由于线程状态比较复杂,我们由易到难,先学习线程的三种基础状态及其转换,简称”三态模型” :

就绪(可运行)状态:线程已经准备好运行,只要获得CPU,就可立即执行
执行(运行)状态:线程已经获得CPU,其程序正在运行的状态
阻塞状态:正在运行的线程由于某些事件(I/O请求等)暂时无法执行的状态,即线程执行阻塞
 

就绪 → 执行:为就绪线程分配CPU即可变为执行状态"
执行 → 就绪:正在执行的线程由于时间片用完被剥夺CPU暂停执行,就变为就绪状态
执行 → 阻塞:由于发生某事件,使正在执行的线程受阻,无法执行,则由执行变为阻塞
(例如线程正在访问临界资源,而资源正在被其他线程访问)
反之,如果获得了之前需要的资源,则由阻塞变为就绪状态,等待分配CPU再次执行

我们可以再添加两种状态:

创建状态:线程的创建比较复杂,需要先申请PCB,然后为该线程运行分配必须的资源,并将该线程转为就绪状态插入到就绪队列中
终止状态:等待OS进行善后处理,最后将PCB清零,并将PCB返回给系统
 

PCB(Process Control Block):为了保证参与并发执行的每个线程都能独立运行,OS配置了特有的数据结构PCB来描述线程的基本情况和活动过程,进而控制和管理线程 

 3.4 线程状态与代码对照

线程生命周期,主要有五种状态:

新建状态(New) : 当线程对象创建后就进入了新建状态.如:Thread t = new MyThread();
就绪状态(Runnable):当调用线程对象的start()方法,线程即为进入就绪状态.
处于就绪(可运行)状态的线程,只是说明线程已经做好准备,随时等待CPU调度执行,并不是执行了t.start()此线程立即就会执行
运行状态(Running):当CPU调度了处于就绪状态的线程时,此线程才是真正的执行,即进入到运行状态
就绪状态是进入运行状态的唯一入口,也就是线程想要进入运行状态状态执行,先得处于就绪状态
阻塞状态(Blocked):处于运状态中的线程由于某种原因,暂时放弃对CPU的使用权,停止执行,此时进入阻塞状态,直到其进入就绪状态才有机会被CPU选中再次执行.
根据阻塞状态产生的原因不同,阻塞状态又可以细分成三种:
等待阻塞:运行状态中的线程执行wait()方法,本线程进入到等待阻塞状态
同步阻塞:线程在获取synchronized同步锁失败(因为锁被其他线程占用),它会进入同步阻塞状态
其他阻塞:调用线程的sleep()或者join()或发出了I/O请求时,线程会进入到阻塞状态.当sleep()状态超时.join()等待线程终止或者超时或者I/O处理完毕时线程重新转入就绪状态
死亡状态(Dead):线程执行完了或者因异常退出了run()方法,该线程结束生命周期
4 多线程代码创建方式1:继承Thread
4.1 概述
Thread类本质上是实现了Runnable接口的一个实例,代表一个线程的实例
启动线程的唯一方法就是通过Thread类的start()实例方法
start()方法是一native方法,它将通知底层操作系统,.最终由操作系统启动一个新线程,操作系统将执行run()
这种方式实现的多线程很简单,通过自己的类直接extends Thread,并重写run()方法,就可以自动启动新线程并执行自己定义的run()方法
模拟开启多个线程,每个线程调用run()方法.

4.2 常用方法
构造方法

Thread() 分配新的Thread对象
Thread(String name) 分配新的Thread对象
Thread(Runnable target) 分配新的Thread对象
Thread(Runnable target,String name) 分配新的Thread对象

普通方法

static Thread currentThread( )
返回对当前正在执行的线程对象的引用
long getId()
返回该线程的标识
String getName()
返回该线程的名称
void run()
如果该线程是使用独立的 Runnable 运行对象构造的,则调用该 Runnable 对象的 run 方法
static void sleep(long millions)
在指定的毫秒数内让当前正在执行的线程休眠(暂停执行)
void start()
使该线程开始执行:Java虚拟机调用该线程的run()
 

5 多线程代码创建方式2:实现Runnable接口
5.1 概述
如果自己的类已经extends另一个类,就无法多继承,此时,可以实现一个Runnable接口

5.2 常用方法
void run()使用实现接口Runnable的对象创建线程时,启动该线程将导致在独立执行的线程中调用对象的run()方法
 

5.4 两种实现方式的比较
继承Thread类
优点: 编写简单,如果需要访问当前线程,无需使用Thread.currentThread()方法,直接使用this即可获得当前线程
缺点: 自定义的线程类已继承了Thread类,所以后续无法再继承其他的类
实现Runnable接口
优点: 自定义的线程类只是实现了Runnable接口或Callable接口,后续还可以继承其他类,在这种方式下,多个线程可以共享同一个target对象,所以非常适合多个相同线程来处理同一份资源的情况,从而可以将CPU、代码、还有数据分开(解耦),形成清晰的模型,较好地体现了面向对象的思想
缺点: 编程稍微复杂,如想访问当前线程,则需使用Thread.currentThread()方法

 

你可能感兴趣的:(java)