干货分享 | 用Pyecharts制作炫酷的可视化大屏

前两篇Pyecharts的文章来帮我们简单的梳理了一下可以用Pyecharts来绘制哪些图表之后,本篇文章我们用pyecharts里面的一些组件,将绘制的图表都组合起来

干货分享 | 用Pyecharts制作炫酷的可视化大屏_第1张图片

d98499ce0ae623cffb6fcb6d1317c3ff.png

首先Grid组件

首先介绍Pyecharts模块当中的Grid组件,使用Grid组件可以很好地将多张图无论是上下组合还是左右组合,都能够很好地拼接起来,我们先来看第一个例子

bar = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家1", Faker.values())
    .add_yaxis("商家2", Faker.values())
    .set_global_opts(title_opts=opts.TitleOpts(title="直方图"))
)
line = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家1", Faker.values())
    .add_yaxis("商家2", Faker.values())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="折线图", pos_top="48%"),
        legend_opts=opts.LegendOpts(pos_top="48%"),
    )
)


grid = (
    Grid()
    .add(bar, grid_opts=opts.GridOpts(pos_bottom="60%"))
    .add(line, grid_opts=opts.GridOpts(pos_top="50%"))
    .render("水平组合图_test.html")
)

干货分享 | 用Pyecharts制作炫酷的可视化大屏_第2张图片

我们可以看到两张图表被以上下组合的方式拼接起来,当然除了上下的拼接以外,我们还可以左右来拼接,代码如下

bar = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家1", Faker.values())
    .add_yaxis("商家2", Faker.values())
    .set_global_opts(title_opts=opts.TitleOpts(title="直方图"),legend_opts=opts.LegendOpts(pos_left="20%"),)
)
line = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家1", Faker.values())
    .add_yaxis("商家2", Faker.values())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="折线图", pos_right="5%"),
        legend_opts=opts.LegendOpts(pos_right="20%"),
    )
)


grid = (
    Grid()
    .add(bar, grid_opts=opts.GridOpts(pos_left="60%"))
    .add(line, grid_opts=opts.GridOpts(pos_right="50%"))
    .render("垂直组合图_test.html")
)

干货分享 | 用Pyecharts制作炫酷的可视化大屏_第3张图片

可以看到我们无论是想上下拼接还是左右拼接,都可以通过调整参数“pos_left”、“pos_right”、“pos_top”以及“pos_bottom”这几个参数来实现,我们再来看一下下面这个例子,我们也可以将地图和直方图两者拼接起来

bar = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家1", Faker.values())
    .add_yaxis("商家2", Faker.values())
    .set_global_opts(legend_opts=opts.LegendOpts(pos_left="20%"))
)


map = (
    Map()
    .add("商家1", [list(z) for z in zip(Faker.provinces, Faker.values())], "china")
    .set_global_opts(title_opts=opts.TitleOpts(title="地图-基本示例"))
)


grid = (
    Grid()
    .add(bar, grid_opts=opts.GridOpts(pos_top="50%", pos_right="75%"))
    .add(map, grid_opts=opts.GridOpts(pos_left="60%"))
    .render("地图+直方图.html")
)

干货分享 | 用Pyecharts制作炫酷的可视化大屏_第4张图片

4fd137249bcddcab7aad7de068e04df8.png

再谈Overlap组件

英文单词“overlap”的意思是重叠,那么放在这里,也就指的是可以将多张图合并成一张,那么该怎么结合才好呢?我们来看一下下面这个例子,我们将直方图和折线图通过overlap组件组合到一起

v1 = Faker.values()
v2 = Faker.values()
v3 = Faker.values()


bar = (
    Bar()
    .add_xaxis(Faker.provinces)
    .add_yaxis("商家A", v1)
    .add_yaxis("商家B", v2)
    .extend_axis(
        yaxis=opts.AxisOpts(
            axislabel_opts=opts.LabelOpts(formatter="{value} 个"), interval=20
        )
    )
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Overlap-bar+line"),
        yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value} 个")),
    )
)


line = Line().add_xaxis(Faker.provinces).add_yaxis("商家C", v3, yaxis_index=1)
bar.overlap(line)
bar.render("直方图+折线图Overlap.html")

干货分享 | 用Pyecharts制作炫酷的可视化大屏_第5张图片

除此之外,我们也可以将散点图和折线图合并在一张图上面,在代码上就只要将直方图的代码替换成散点图的就行,这边也就具体不做演示

9018a8adac1d660fd9aa2939ac9366f4.png

Grid组件 + Overlap组件相结合

我们也可以将上面提高的两个组件结合起来使用,以此来绘制多条Y轴的直方图图表,代码如下

Bar()
    .add_xaxis(x_data)
    .add_yaxis(
        "A",
        [具体相关的数据],
        yaxis_index=0,
        color="#d14a61",
    )
    .add_yaxis(
        "B",
        [具体相关的数据],
        yaxis_index=1,
        color="#5793f3",
    )
    .直方图的全局配置代码....
    
line = (
    Line()
    .add_xaxis(x_data)
    .add_yaxis(
        "C",
        [具体相关的数据],
        yaxis_index=2,
        color="#675bba",
        label_opts=opts.LabelOpts(is_show=False),
    )
)


bar.overlap(line)
grid = Grid()
grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True)
grid.render("test.html")

e248369396cf9d8453ad1d90c3298446.png

分页组件Tab

我们在用Pyecharts绘制了多张图表之后,可以直接Tab组件将多张图表连起来,一页放一张图表,具体看下面的例子和代码,

def bar_datazoom_slider() -> Bar:
    c = (
        Bar()
        .add_xaxis(Faker.days_attrs)
        .add_yaxis("商家A", Faker.days_values)
        .set_global_opts(
            title_opts=opts.TitleOpts(title="Bar-DataZoom(slider-水平)"),
            datazoom_opts=[opts.DataZoomOpts()],
        )
    )
    return c


def line_markpoint() -> Line:
    c = (
        Line()
        .add_xaxis(Faker.choose())
        .add_yaxis(
            "商家A",
            Faker.values(),
            markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="min")]),
        )
        .set_global_opts(title_opts=opts.TitleOpts(title="折线图"))
    )
    return c


def pie_rosetype() -> Pie:
    v = Faker.choose()
    c = (
        Pie()
        .add(
            "",
            [list(z) for z in zip(v, Faker.values())],
            radius=["30%", "75%"],
            center=["25%", "50%"],
            rosetype="radius",
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(title_opts=opts.TitleOpts(title="饼图-玫瑰图示例"))
    )
    return c
    
tab = Tab()
tab.add(bar_datazoom_slider(), "直方图")
tab.add(line_markpoint(), "折线图")
tab.add(pie_rosetype(), "饼图")
tab.render("tab_base.html")

分别将所绘制的三张图表放置在三个页面当中,通过pyecharts库当中的tab串联起来

0bc3ac6b46723c8bd1c0d3c62269e2da.png

最后是Page组件

和上面Tab组件不一样的是,Tab组件是一页放一张图表,有几张图表就分成几页,而Page组件则是将绘制完成的多张图表统统放在一张页面里面,代码的改动上面也十分的简单,只要将上面代码的Tab部分改成Page()即可,如下

def bar_datazoom_slider() -> Bar:
    c = (
        Bar()
        .add_xaxis(Faker.days_attrs)
        .add_yaxis("商家A", Faker.days_values)
        .set_global_opts(
            title_opts=opts.TitleOpts(title="Bar-DataZoom(slider-水平)"),
            datazoom_opts=[opts.DataZoomOpts()],
        )
    )
    return c


def line_markpoint() -> Line:
    c = (
        Line()
        .add_xaxis(Faker.choose())
        .add_yaxis(
            "商家A",
            Faker.values(),
            markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="min")]),
        )
        .set_global_opts(title_opts=opts.TitleOpts(title="折线图"))
    )
    return c


def pie_rosetype() -> Pie:
    v = Faker.choose()
    c = (
        Pie()
        .add(
            "",
            [list(z) for z in zip(v, Faker.values())],
            radius=["30%", "75%"],
            center=["25%", "50%"],
            rosetype="radius",
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(title_opts=opts.TitleOpts(title="饼图-玫瑰图示例"))
    )
    return c
    
page = Page(layout=Page.SimplePageLayout)
page.add(
    bar_datazoom_slider(),
    line_markpoint(),
    pie_rosetype(),
)
page.render("page_simple_layout.html")

上图所示的图表在页面当中是不能被挪动的,在Page()组件当中我们还能够使得图表按照我们所想的那样随意的挪动

## 上面的代码都一样,
page = Page(layout=Page.DraggablePageLayout)
page.add(
    bar_datazoom_slider(),
    line_markpoint(),
    pie_rosetype(),
)
page.render("page_draggable_layout.html")

29b011a346c836bfdfa60da50013a8c7.png

写在最后

本篇文章所用到的绘制的图表都比较的简单,为了可以让读者更加容易轻松的上手来实践,本质上就是通过上面提到的几大组件将绘制好的图表给串联起来,想要获取源码在后台回复“pyecharts组件”就行

往期回顾

01

分享几个用Python给图片添加水印的方法,简单实用

02

介绍如何用Python来绘制高清的交互式地图,建议收藏

03

Python趣味编程 | 看看如何用Python生成素描风格的自拍照,并且加上Logo

04

干货分享 | 看如何用Python数据可视化来分析用户留存率,建议收藏

分享、收藏、点赞、在看安排一下?

3433ecdab5c50c62e8ac88359b987ec1.gif

2c42012334f00c3c9345b17a0eb230a4.gif

94e8d5d3c63ee3c84e398240059c26bf.gif

2ca8f60badd45cad9a8c9472ce2719fc.gif

你可能感兴趣的:(可视化,python,数据可视化,django,机器学习)