转:https://github.com/fxsjy/jieba
“结巴”中文分词:做最好的 Python 中文分词组件。
支持三种分词模式:
全模式:把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
精确模式:试图将句子最精确地切开,适合文本分析;
搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
支持繁体分词
支持自定义词典
MIT 授权协议
jieba.cut 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用
HMM 模型
jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM
模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK
字符串,可能无法预料地错误解码成 UTF-8
jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for
循环来获得分词后得到的每一个词语(unicode),或者用
jieba.lcut 以及 jieba.lcut_for_search 直接返回 list
jieba.Tokenizer(dictionary=DEFAULT_DICT)
新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射
import jieba
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)#
print ("Full Mode: " + "/ ".join(seg_list))#全模式
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list))#精确模式
seg_list = jieba.cut("他来到了网易杭研大厦")#默认是精确模式
print(", ".join(seg_list))
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")#搜索引擎模式
print(", ".join(seg_list))
【全模式】
Full Mode: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
【精确模式】
Default Mode: 我/ 来到/ 北京/ 清华大学
【新词模式】
他, 来到, 了, 网易, 杭研, 大厦
注:
(此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
【搜索引擎模式】
小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, ,, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
载入词典
例如:userdict.txt
创新办 3 i
云计算 5
凱特琳 nz
台中
更改分词器(默认为 jieba.dt)的 tmp_dir 和 cache_file 属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。
范例:
自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
云计算 5
李小福 2 nr
创新办 3 i
easy_install 3 eng
好用 300
韩玉赏鉴 3 nz
八一双鹿 3 nz
台中
凱特琳 nz
Edu Trust认证 2000
用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py(代码如下)
之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
#encoding=utf-8
from __future__ import print_function, unicode_literals
import sys
sys.path.append("../")
import jieba
jieba.load_userdict("userdict.txt")#载入自定义词典:每一行包括词语、词频(可省略)、词性(可省略)
import jieba.posseg as pseg
jieba.add_word('石墨烯')
jieba.add_word('凱特琳')
jieba.del_word('自定义词')
test_sent = (
"李小福是创新办主任也是云计算方面的专家; 什么是八一双鹿\n"
"例如我输入一个带“韩玉赏鉴”的标题,在自定义词库中也增加了此词为N类\n"
"「台中」正確應該不會被切開。mac上可分出「石墨烯」;此時又可以分出來凱特琳了。"
)
words = jieba.cut(test_sent)#精确模式分词
print('/'.join(words))
print("="*40)#输出40个=号
#李小福/是/创新办/主任/也/是/云计算/方面/的/专家/;/ /什么/是/八一双鹿/
#/例如/我/输入/一个/带/“/韩玉赏鉴/”/的/标题/,/在/自定义词/库中/也/增加/了/此/词为/N/类/
#/「/台中/」/正確/應該/不會/被/切開/。/mac/上/可/分出/「/石墨烯/」/;/此時/又/可以/分出/來/凱特琳/了/。
#========================================
result = pseg.cut(test_sent)
for w in result:
print(w.word, "/", w.flag, ", ", end=' ')#输出词语、词性
print("\n" + "="*40)
#李小福 / nr , 是 / v , 创新办 / i , 主任 / b , 也 / d , 是 / v , 云计算 / x , 方面 / n , 的 / uj , 专家 / n , ; / x , / x , 什么 / r , 是 / v , 八一双鹿 / nz ,
# / x , 例如 / v , 我 / r , 输入 / v , 一个 / m , 带 / v , “ / x , 韩玉赏鉴 / nz , ” / x , 的 / uj , 标题 / n , , / x , 在 / p , 自定义词 / n , 库中 / nrt , 也 / d , 增加 / v , 了 / ul , 此 / r , 词 / n , 为 / p , N / eng , 类 / q ,
# / x , 「 / x , 台中 / s , 」 / x , 正確 / ad , 應該 / v , 不 / d , 會 / v , 被 / p , 切開 / ad , 。 / x , mac / eng , 上 / f , 可 / v , 分出 / v , 「 / x , 石墨烯 / x , 」 / x , ; / x , 此時 / c , 又 / d , 可以 / c , 分出 / v , 來 / zg , 凱特琳 / nz , 了 / ul , 。 / x ,
#========================================
terms = jieba.cut('easy_install is great')
print('/'.join(terms))
terms = jieba.cut('python 的正则表达式是好用的')
print('/'.join(terms))
print("="*40)
#easy_install/ /is/ /great
#python/ /的/正则表达式/是/好用/的
#========================================
# test frequency tune测试词语词频
testlist = [
('今天天气不错', ('今天', '天气')),
('如果放到post中将出错。', ('中', '将')),
('我们中出了一个叛徒', ('中', '出')),
]
for sent, seg in testlist:
print('/'.join(jieba.cut(sent, HMM=False)))#精确模式,不使用HMM模型
word = ''.join(seg)
print('%s Before: %s, After: %s' % (word, jieba.get_FREQ(word), jieba.suggest_freq(seg, True)))#suggest_freq(seg, True)调节单个词语词频
print('/'.join(jieba.cut(sent, HMM=False)))
print("-"*40)
#今天天气/不错
#今天天气 Before: 5, After: 0
#今天天气/不错
#----------------------------------------
#如果/放到/post/中/将/出错/。
#中将 Before: 494, After: 494
#如果/放到/post/中/将/出错/。
#----------------------------------------
#我们/中/出/了/一个/叛徒
#中出 Before: 3, After: 3
#我们/中/出/了/一个/叛徒
#----------------------------------------
调整词典
代码示例:
>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中将/出错/。
>>> jieba.suggest_freq(('中', '将'), True)
494
>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中/将/出错/。
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台/中/」/正确/应该/不会/被/切开
>>> jieba.suggest_freq('台中', True)
69
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台中/」/正确/应该/不会/被/切开
基于 TF-IDF 算法的关键词抽取
import jieba.analyse
jieba.analyse.extract_tags(sentence, topK=20, withWeight=False,
allowPOS=()) sentence 为待提取的文本
topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
withWeight 为是否一并返回关键词权重值,默认值为 False
allowPOS 仅包括指定词性的词,默认值为空,即不筛选
jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件
代码示例 (关键词提取):https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py(代码如下)
import sys
sys.path.append('../')
import jieba
import jieba.analyse
from optparse import OptionParser
USAGE = "usage: python extract_tags.py [file name] -k [top k]"
parser = OptionParser(USAGE)
parser.add_option("-k", dest="topK")
opt, args = parser.parse_args()
if len(args) < 1:
print(USAGE)
sys.exit(1)
file_name = args[0]
if opt.topK is None:
topK = 10
else:
topK = int(opt.topK)
content = open(file_name, 'rb').read()
tags = jieba.analyse.extract_tags(content, topK=topK)
print(",".join(tags))
关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径
用法: jieba.analyse.set_idf_path(file_name) # file_name为自定义语料库的路径
自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big(内容如下)
劳动防护 13.900677652
勞動防護 13.900677652
生化学 13.900677652
生化學 13.900677652
奥萨贝尔 13.900677652
奧薩貝爾 13.900677652
考察队员 13.900677652
考察隊員 13.900677652
......
用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py
import sys
sys.path.append('../')
import jieba
import jieba.analyse
from optparse import OptionParser
USAGE = "usage: python extract_tags_idfpath.py [file name] -k [top k]"
parser = OptionParser(USAGE)
parser.add_option("-k", dest="topK")
opt, args = parser.parse_args()
if len(args) < 1:
print(USAGE)
sys.exit(1)
file_name = args[0]
if opt.topK is None:
topK = 10
else:
topK = int(opt.topK)
content = open(file_name, 'rb').read()
jieba.analyse.set_idf_path("../extra_dict/idf.txt.big");#与extract_tags相比多了这一句
tags = jieba.analyse.extract_tags(content, topK=topK)
print(",".join(tags))
关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径
用法: jieba.analyse.set_stop_words(file_name) # file_name为自定义语料库的路径
自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt(内容如下)
the
of
is
and
to
in
that
we
for
an
are
by
be
as
on
with
can
if
from
which
you
it
this
then
at
have
all
not
one
has
or
that
的
了
和
是
就
都
而
及
與
著
或
一個
沒有
我們
你們
妳們
他們
她們
是否
用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py(代码如下)
import sys
sys.path.append('../')
import jieba
import jieba.analyse
from optparse import OptionParser
USAGE = "usage: python extract_tags_stop_words.py [file name] -k [top k]"
parser = OptionParser(USAGE)
parser.add_option("-k", dest="topK")
opt, args = parser.parse_args()
if len(args) < 1:
print(USAGE)
sys.exit(1)
file_name = args[0]
if opt.topK is None:
topK = 10
else:
topK = int(opt.topK)
content = open(file_name, 'rb').read()
jieba.analyse.set_stop_words("../extra_dict/stop_words.txt")#停用词
jieba.analyse.set_idf_path("../extra_dict/idf.txt.big");#idf词频
tags = jieba.analyse.extract_tags(content, topK=topK)
print(",".join(tags))
关键词一并返回关键词权重值示例
用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py(代码如下)
import sys
sys.path.append('../')
import jieba
import jieba.analyse
from optparse import OptionParser
USAGE = "usage: python extract_tags_with_weight.py [file name] -k [top k] -w [with weight=1 or 0]"
parser = OptionParser(USAGE)
parser.add_option("-k", dest="topK")
parser.add_option("-w", dest="withWeight")
opt, args = parser.parse_args()
if len(args) < 1:
print(USAGE)
sys.exit(1)
file_name = args[0]
if opt.topK is None:
topK = 10
else:
topK = int(opt.topK)
if opt.withWeight is None:
withWeight = False
else:
if int(opt.withWeight) is 1:
withWeight = True
else:
withWeight = False
content = open(file_name, 'rb').read()
tags = jieba.analyse.extract_tags(content, topK=topK, withWeight=withWeight)
if withWeight is True:
for tag in tags:
print("tag: %s\t\t weight: %f" % (tag[0],tag[1]))
else:
print(",".join(tags))
jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。
标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。
用法示例
>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for word, flag in words:
... print('%s %s' % (word, flag))
...
我 r
爱 v
北京 ns
天安门 ns
原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升
基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows
用法:
例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py(代码如下)
import sys
import time
sys.path.append("../../")
import jieba
jieba.enable_parallel()
url = sys.argv[1]
content = open(url,"rb").read()
t1 = time.time()
words = "/ ".join(jieba.cut(content))
t2 = time.time()
tm_cost = t2-t1
log_f = open("1.log","wb")
log_f.write(words.encode('utf-8'))
print('speed %s bytes/second' % (len(content)/tm_cost))
实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。
注意:并行分词仅支持默认分词器 jieba.dt 和 jieba.posseg.dt。
注意,输入参数只接受 unicode
精确模式
result = jieba.tokenize(u'永和服装饰品有限公司')
for tk in result:
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
word 永和 start: 0 end:2
word 服装 start: 2 end:4
word 饰品 start: 4 end:6
word 有限公司 start: 6 end:10
搜索模式
result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')
for tk in result:
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
word 永和 start: 0 end:2
word 服装 start: 2 end:4
word 饰品 start: 4 end:6
word 有限 start: 6 end:8
word 公司 start: 8 end:10
word 有限公司 start: 6 end:10
使用示例:python -m jieba news.txt > cut_result.txt
- -其他词典
下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 jieba.set_dictionary(‘data/dict.txt.big’)