之前实践过,但是由于长时间没做,当时也没写笔记所以后续也浪费了一点时间
对应的google已经训练好的模型可以在这里下载
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
其中frozen_graph的输入文件使用到的有mobilenet_v1_1.0_224.ckpt.*+mobilenet_v1_1.0_224_eval.pbtxt
使用的命令如下:
freeze_graph
--input_graph=C:\Users\judy.yuan\_bazel_judy.yuan\i7fa2ce7\execroot\org_tensorflow\bazel-out\x64_windows-opt\bin\tensorflow\lite\toco\test\mobilenet_v1_1.0_224_eval.pbtxt
--input_checkpoint=C:\Users\judy.yuan\_bazel_judy.yuan\i7fa2ce7\execroot\org_tensorflow\bazel-out\x64_windows-opt\bin\tensorflow\lite\toco\test\mobilenet_v1_1.0_224.ckpt
--output_graph=C:\Users\judy.yuan\_bazel_judy.yuan\i7fa2ce7\execroot\org_tensorflow\bazel-out\x64_windows-opt\bin\tensorflow\lite\toco\test\mobilenet_v1_1.0_224_frozen_judy.pb
--output_node_names=MobilenetV1/Predictions/Reshape_1
执行该命令之后会生成frozen的pb文件
生成冻图之后需要的是生成tflite的文件
toco
--input_file=C:\Users\hui.yuan\_bazel_judy.yuan\i7fa2ce7\execroot\org_tensorflow\bazel-out\x64_windows-opt\bin\tensorflow\lite\toco\test\mobilenet_v1_1.0_224_frozen_judy.pb
--output_file=C:\Users\hui.yuan\_bazel_judy.yuan\i7fa2ce7\execroot\org_tensorflow\bazel-out\x64_windows-opt\bin\tensorflow\lite\toco\test\mobilenet_v1_1.0_224_frozen_judy.tflite
--input_shape="1,224, 224,3"
--input_array=input
--output_array=MobilenetV1/Predictions/Reshape_1
第一种方法是直接在toco cmd
toco --input_file=****_frozen.pb --output_file=****.tflite --input_shape="1,49" --input_array=inputs/input --output_array=layer5/logits
执行该命令一定需要在toco应用程序所在目录
还有一种方法目前正在尝试
import tensorflow as tf
convert=tf.lite.TFLiteConverter.from_frozen_graph("model_proc_mobile_fps.pb",input_arrays=["inputs/input"],output_arrays=["layer5/logits"],
input_shapes={"inputs/input":[1,49]})
convert.post_training_quantize=False
tflite_model=convert.convert()
open("quantized_model.tflite","wb").write(tflite_model)
其中对应的tensorflow的版本为1.13.1
进行toco转换的时候需要输入--input_array= 和 --output_array= 这些信息可以由下面这个脚本得出
gf = tf.GraphDef()
gf.ParseFromString(open('save/model.pb','rb').read())
for n in gf.node:
print ( n.name +' ===> '+n.op )
import tensorflow as tf
import numpy as np
from tensorflow.python.framework import graph_util
with tf.Session(graph=tf.Graph()) as sess:
# 使用 NumPy 生成假数据(phony data), 总共 100 个点.
with tf.name_scope("input"):
x = tf.placeholder(tf.float32, [1, 10], name='input0')
x_data = np.float32(np.random.rand(1, 10)) # 随机输入
print(x_data)
# 构造一个线性模型
#
with tf.name_scope('bias'):
b = tf.Variable(tf.zeros([1]), name='b')
print(b)
with tf.name_scope('weight'):
W = tf.Variable(tf.random_uniform([1, 1], -1.0, 1.0), name='weight')
print(W)
with tf.name_scope('output'):
y = tf.matmul(W,x) + b
print(y)
"""
# 最小化方差
with tf.name_scope('mean'):
loss = tf.reduce_mean(tf.square(y))
print("loss")
print(loss)
optimizer = tf.train.GradientDescentOptimizer(0.5)
print("optimizer")
print(optimizer)
train = optimizer.minimize(loss)
print("train")
print(train)
"""
# 初始化变量
init = tf.initialize_all_variables()
# 启动图 (graph)
sess.run(init)
# 拟合平面
for step in range(0, 201):
#sess.run(train, feed_dict)
if step % 20 == 0:
print(step, sess.run(W), sess.run(b))
input_x = np.float32([[1,2,0,0,0,0,0,0,0,0]])
feed_dict = {x: input_x}
print(sess.run(y, feed_dict))
constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['output/add'])
saver = tf.train.Saver()
model_path = "kk/model.ckpt"
save_path = saver.save(sess, model_path)
with tf.gfile.GFile('kk/model.pb', mode='wb') as f: #模型的名字是model.pb
f.write(constant_graph.SerializeToString())
gf = tf.compat.v1.GraphDef()
gf.ParseFromString(open('kk/model.pb','rb').read())
print("\n\n\n")
for n in gf.node:
print ( n.name +' ===> '+n.op )
convert=tf.lite.TFLiteConverter.from_frozen_graph("kk/model.pb",input_arrays=["input/input0"],output_arrays=["output/add"],
input_shapes={"input/input0":[1,10]})
convert.post_training_quantize=False
tflite_model=convert.convert()
open("kk/model.tflite","wb").write(tflite_model)
输入是10组数据,输出也是10组数据
1, 2, 0, 0, 0, 0, 0, 0, 0, 0],
放在手机中解析后,使用模型推理出来的结果如下:
Loaded model model.tflite
resolved reporter
num 0batch 1
invoked
average time: 0.011 ms
Inference output 0 value is -0.0405481
Inference output 1 value is -0.0810962
Inference output 2 value is 0
Inference output 3 value is 0
Inference output 4 value is 0
Inference output 5 value is 0
Inference output 6 value is 0
Inference output 7 value is 0
Inference output 8 value is 0
Inference output 9 value is 0
grade(0-4), Inference grade is :2
num 1batch 1