- 车载以太网-组播
天赐好车
车载以太网车载以太网组播
目录车载以太网中的组播:从原理到车载应用**一、组播的核心概念与车载网络价值****二、车载以太网组播的关键协议与机制**1.**组播IP地址管理(IGMP协议)**2.**组播数据链路层实现(MAC地址映射)****三、车载以太网组播的典型应用场景**1.**自动驾驶与传感器数据分发**2.**车载信息娱乐与多媒体传输**3.**车载诊断与OTA升级****四、车载组播的关键技术挑战与解决方案*
- 车载毫米波雷达行业发展5——企业
奔袭的算法工程师
行业资讯人工智能自动驾驶目标检测
5.1博世5.1.1公司简介博世集团创立于1886年,业务涵盖汽车与智能交通技术、工业技术、消费品、能源与建筑技术四大领域,是德国最大的工业企业之一、全球最大的汽车零部件供应商、最早研究车载毫米波雷达的企业之一。博世在高级辅助驾驶和自动驾驶上拥有业界最为领先和完整的产品线,也是智能驾驶行业发展的风向标。在中国市场,2022年,博世在前向雷达市场的份额为40.54%,占据着国内前雷达市场第一的位置。
- 自动驾驶:特斯拉 Model Y全自动驾驶交付的技术原理
InnoLink_1024
自动驾驶人工智能自动驾驶人工智能机器学习
特斯拉ModelY首次实现全程无人控制的全自动驾驶交付,依赖于其先进的FSD(FullSelf-Driving)系统,结合强大的硬件和软件架构。以下从自动驾驶技术的角度,详细介绍其工作原理:1.硬件架构:HW5.0感知与计算平台特斯拉ModelY的全自动驾驶交付基于最新的**HW5.0(Hardware5.0)**平台,其核心硬件包括:传感器套件:12个高清摄像头:提供360°视觉覆盖,分辨率高达
- AWS Cognito项目实战指南:集成用户管理与自定义电子邮件功能
一一MIO一一
本文还有配套的精品资源,点击获取简介:本项目涉及利用AWSCognito服务,创建一个基于云端的用户身份验证和管理应用。通过集成Cognito用户池,项目支持社交登录和自定义用户身份保护,同时涉及通过AWSLambda发送自定义电子邮件通知,增强用户体验。项目采用TypeScript编程语言,提升代码的可维护性和可读性,为开发者提供一个学习AWS无服务器认证解决方案的实践案例。1.AWSCogni
- 行为正则化与顺序策略优化结合的离线多智能体学习算法
离线多智能体强化学习(MARL)是一个新兴领域,目标是在从预先收集的数据集中学习最佳的多智能体策略。随着人工智能技术的发展,多智能体系统在诸如自动驾驶、智能家居、机器人协作以及智能调度决策等方面展现了巨大的应用潜力。但现有的离线MARL方法也面临很多挑战,仍存在不协调行为和分布外联合动作的问题。为了应对这些挑战,中山大学计算机学院、美团履约平台技术部开展了学术合作项目,并取得了一些的成果,希望分享
- YOLOv11革命性升级:基于MobileNetv4的UIB和ExtraDW模块重构C3k2架构,实现移动端推理性能飞跃
博导ai君
深度学习教学-附源码YOLO重构
引言与背景概述在当今人工智能飞速发展的时代,目标检测技术已成为计算机视觉领域的核心技术之一。从自动驾驶汽车到智能安防系统,从移动端AR应用到工业质检,目标检测无处不在。然而,随着应用场景的多样化,特别是移动端和边缘设备的普及,对模型的计算效率提出了更为严苛的要求。YOLO(YouOnlyLookOnce)系列算法作为目标检测领域的领军者,一直在精度与速度之间寻求最佳平衡。从YOLOv1到最新的YO
- ROS 避障技术介绍
Xian-HHappy
机器人-Robotros避障
ROS避障技术介绍一、ROS避障系统概述ROS(机器人操作系统)作为移动机器人开发的主流框架,其避障技术依托模块化设计,通过传感器数据融合、环境建模与运动规划实现动态障碍物规避。在物流机器人、服务机器人、自动驾驶等场景中,ROS避障系统需满足实时性、安全性与灵活性要求,核心流程包括环境感知-障碍建模-路径规划-运动控制四个环节。二、避障核心组件与原理1.传感器层:环境信息获取激光雷达(如Velod
- 多模态融合相机L3CAM
moonsims
人工智能
多模态融合相机L3CAML3CAM是Beamagine公司推出的多模态传感器融合技术,结合了激光雷达(LiDAR)和可见光摄像头,旨在为自动驾驶、工业机器人和其他需要精确环境感知的应用场景提供高效、安全的解决方案。L3CAM技术参数L3CAM结合了LiDAR和可见光摄像头,使其能够提供三维空间感知及图像级别的环境识别能力激光雷达部分(LiDAR)探测范围:大约200米(具体范围根据不同环境和反射面
- Python在自动驾驶中的多传感器融合——让智能汽车“看得更清楚”
Echo_Wish
Python!实战!python自动驾驶汽车
Python在自动驾驶中的多传感器融合——让智能汽车“看得更清楚”在自动驾驶技术的演进过程中,多传感器融合(Multi-SensorFusion)是不可或缺的一环。单一传感器往往存在局限性,例如摄像头怕光线变化,激光雷达价格昂贵,毫米波雷达分辨率有限,但如果将它们结合起来,就能形成一个更全面、更可靠的环境感知系统。今天,我们就来聊聊如何用Python实现自动驾驶中的多传感器融合,并结合最新技术趋势
- Java AI 新纪元:Spring AI 与 Spring AI Alibaba 的崛起
小沛9
SpringAIAlibabaSpringAIjava人工智能springspringaiSAA
此章节没什么营养,只是一个描述,同时也能看到AI的能力(文章基本都是AI进行生成的),小沛觉得开始不写点引言好像差了点什么东西,好像鱼离开了自行车。引言:AI时代对Java开发者的机遇与挑战,Java在AI领域的现状在当今技术飞速发展的时代,人工智能(AI)已不再是遥不可及的未来概念,而是深刻地融入到我们生活的方方面面,从智能推荐系统到自动驾驶,从自然语言处理到计算机视觉,AI正以前所未有的速度改
- 机器人系统导航里程计介绍
Xian-HHappy
机器人机器人人工智能算法里程计
一、引言在移动机器人的研究与应用领域,精准且实时地确定机器人的位置与姿态是实现其自主功能的关键。里程计作为达成这一目标的核心技术之一,在移动机器人的自主导航、路径规划、定位以及地图构建等诸多关键领域扮演着举足轻重的角色。随着机器人技术的持续演进,里程计已蜕变成为移动机器人实现SLAM(同步定位与地图构建)功能的基石。它通过对各类传感器所采集数据的精细计算与处理,运用增量式递推的策略,实时推算出机器
- Python助力自动驾驶:深度学习模型优化全攻略
Echo_Wish
Python!实战!python自动驾驶深度学习
Python助力自动驾驶:深度学习模型优化全攻略说起自动驾驶,大家第一反应往往是“高精地图”“传感器融合”“路径规划”等等,背后真正的“大脑”其实是各式各样的深度学习模型。它们负责感知环境、识别路况、预测行为,甚至实时做出决策。可是,跑在车上的这些模型不仅要精准,还得轻量、实时、稳定,这可不是简单的“丢GPU就能解决”的问题。今天,咱们就从Python开发者的视角,聊聊自动驾驶里深度学习模型的优化
- TensorFlow:开启智能时代的引擎
科技林总
DeepSeek学AI人工智能
想象一下,计算机能看懂病历、汽车能自动驾驶、机器能创作艺术——这一切的核心,正是深度学习的力量。而推动这场革命的引擎之一,就是今天的主角:**TensorFlow**。---###**一、背景:为什么需要TensorFlow?1.**深度学习的爆发**-传统编程无法解决图像识别、自然语言处理等复杂问题。-神经网络需要高效工具处理海量数据和计算。2.**Google的答案**-2015年开源Tens
- 深度剖析AI人工智能在自动驾驶中的系统优化
AI云原生与云计算技术学院
人工智能自动驾驶机器学习ai
深度剖析AI人工智能在自动驾驶中的系统优化关键词:AI人工智能、自动驾驶、系统优化、传感器融合、决策算法摘要:本文深入探讨了AI人工智能在自动驾驶系统中的优化问题。从自动驾驶的背景入手,详细解释了相关核心概念,如传感器、决策算法等。阐述了这些核心概念之间的关系,介绍了核心算法原理和具体操作步骤,还通过数学模型和公式进行了理论支持。给出了项目实战案例,分析了实际应用场景,推荐了相关工具和资源,最后探
- MCP 与 AI 任务分解:如何让 AI 高效执行复杂任务?
Echo_Wish
Python进阶人工智能
MCP与AI任务分解:如何让AI高效执行复杂任务?在人工智能应用中,任务分解(TaskDecomposition)是一个绕不开的话题。无论是自动驾驶、智能客服,还是代码生成,AI都需要将复杂问题拆解成可执行的小任务,逐步完成目标。而在AI领域,MCP(Multi-StepCognitiveProcessing,多步认知处理)是一种前沿技术,旨在提升AI的任务分解能力,使其能够更精准、高效地执行复杂
- Alluxio在数据索引和模型分发中的核心价值与应用
Alluxio
人工智能深度学习机器学习
在当前的技术环境下,搜索、推荐、广告、大模型、自动驾驶等领域的业务依赖于海量数据的处理和复杂模型的训练。这些任务通常涉及从用户行为数据和社交网络数据中提取大量信息,进行模型训练和推理。这一过程需要强大的数据分发能力,尤其是在多个服务器同时拉取同一份数据时,更是考验基础设施的性能。在这样的背景下,AlluxioEnterpriseAI在数据索引与模型分发/部署方面展示了其独特的优势,特别是在处理海量
- OpenCV 三维重建实战:从工业检测到自动驾驶,3 大场景代码全解析
从零开始学习人工智能
opencv自动驾驶数码相机
:工业零部件三维建模与检测案例背景:在汽车制造工厂,对于复杂形状的发动机零部件质量检测与逆向工程需求,需要高精度的三维模型。传统检测方法效率低且精度有限,而三维重建技术可快速获取零部件三维信息,实现高效检测与设计优化。技术实现:使用多个相机从不同角度拍摄零部件,利用calib3d模块进行相机标定,获取准确的相机内参和外参。通过特征点检测与匹配算法(如SIFT、ORB等)找到不同图像间的对应点,再用
- 这份「零基础」机器学习实战课程,帮你彻底搞懂AI不再迷茫!——深度解析ML-For-Beginners
wylee
人工智能机器学习
引言:告别迷茫,拥抱AI未来在当今科技浪潮之巅,人工智能(AI)无疑是最璀璨的明星。机器学习(MachineLearning),作为AI的核心驱动力,正以前所未有的速度渗透到我们生活的方方面面:从智能推荐系统到自动驾驶,从疾病诊断到金融风控,其应用场景几乎无处不在。然而,对于无数渴望投身AI领域的学习者而言,机器学习的门槛似乎一直高不可攀。你是否也曾有过这样的困惑:面对海量的在线课程和资料,眼花缭
- AI伦理与自动驾驶:当机器掌握方向盘时的道德抉择
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能自动驾驶unixai
AI伦理与自动驾驶:当机器掌握方向盘时的道德抉择关键词:AI伦理、自动驾驶、道德算法、电车难题、责任归属、技术监管、人机协作摘要:本文深入探讨自动驾驶技术发展过程中面临的伦理挑战,从经典的"电车难题"出发,分析AI决策系统在生死抉择中的道德困境。我们将剖析自动驾驶的伦理框架设计原则,探讨技术实现方案,并通过代码示例展示伦理算法如何嵌入自动驾驶系统。文章还将讨论法律责任划分、社会接受度等现实问题,最
- AWS Lambda与RDS连接优化之旅
t0_54manong
编程问题解决手册aws云计算个人开发
在云计算的时代,AWSLambda与RDS的结合为开发者提供了高效且灵活的解决方案。然而,在实际应用中,我们常常会遇到一些性能瓶颈。本文将通过一个真实案例,探讨如何优化AWSLambda与RDS之间的连接,以提高API的响应速度。背景介绍最近,我们在AWS上部署了一个使用Dotnet6开发的API,它通过APIGateway暴露给外部,并连接到同VPC内的MySQLAuroraRDS数据库。部署前
- 智能汽车图像及视频处理方案,支持视频智能包装创作能力
美摄科技
汽车
在这个日新月异的智能时代,每一帧画面都承载着超越想象的力量。随着自动驾驶技术的飞速发展,智能汽车不仅成为了未来出行的代名词,更是技术与艺术完美融合的典范。在这场变革的浪潮中,美摄科技以创新为翼,推出了领先的智能汽车图像及视频处理方案,为智能汽车行业带来了前所未有的视觉盛宴,重新定义了智能出行的视觉体验。一、智能重塑,视觉新境界美摄科技的智能汽车图像及视频处理方案,是基于深度学习、人工智能及大数据处
- 降低20%成本暴雨定制化液冷系统落地
暴雨信息凭借多年液冷设计及实施经验,帮助某知名自动驾驶企业完成了车端算力设备和后端数据中心的液冷改造升级,进一步提升了其车端实时数据处理能力及后端模型训练优化效率。但在后期持续运维过程中,由于测试中心尚未配备液冷系统,只能依赖外接散热器和水泵来进行液冷设备的测试与故障排除,不仅噪音大还存在较大的冷却液泄漏风险。为此,客户期望我们帮助其建立起一套规范化的液冷测试系统,以解决当下困境。暴雨信息专业技术
- 【软件系统架构】系列四:嵌入式软件-NPU(神经网络处理器)系统及模板
目录一、什么是NPU?二、NPU与CPU/GPU/DSP对比三、NPU的工作原理核心结构:数据流架构:四、NPU芯片架构(简化图)五、NPU的优势六、NPU应用场景视觉识别语音识别自动驾驶智能监控AIoT设备七、主流NPU芯片/架构实例八、开发者工具生态(通用)九、NPU集成建议(嵌入式开发场景)十、NPU芯片选型对比+模型部署流程+嵌入式工程模板1.主流NPU芯片选型对比表2.模型部署流程(以T
- 计算机视觉实战:OpenCV 与深度学习结合
QuantumWalker
计算机视觉opencv深度学习python
```html计算机视觉实战:OpenCV与深度学习结合计算机视觉实战:OpenCV与深度学习结合在当今数字化时代,计算机视觉技术已经渗透到我们生活的方方面面。从智能手机的面部识别解锁,到自动驾驶汽车的环境感知,计算机视觉正在改变我们的世界。而在这个领域中,OpenCV和深度学习的结合,更是推动了计算机视觉技术的发展。什么是OpenCV?OpenCV(OpenSourceComputerVisio
- AI 在自动驾驶路径规划中的深度强化学习优化
QuantumWalker
人工智能自动驾驶机器学习
```htmlAI在自动驾驶路径规划中的深度强化学习优化在当今快速发展的科技领域中,人工智能(AI)的应用正在不断拓展其边界。特别是在自动驾驶技术中,AI的应用已经从简单的感知和识别发展到了复杂的决策和控制阶段。其中,深度强化学习作为AI的一个重要分支,在自动驾驶路径规划中发挥着越来越重要的作用。一、深度强化学习简介深度强化学习是一种结合了深度学习和强化学习的机器学习方法。它通过让智能体在环境中进
- 特斯拉及新能源车企笔试面试题型解析上-21期
启芯硬件笔记
经验分享PCBEMI硬件工程面试职场和发展
本专栏预计更新90期左右。当前第21期-特斯拉硬件.特斯拉作为全球领先的电动汽车、能源存储和人工智能公司,其硬件工程师岗位的招聘通常包括笔试和多轮技术面试,考察领域涵盖数字电路设计、模拟电路、嵌入式系统、电动车技术和自动驾驶等。由于特斯拉的创新性和技术领先地位,其面试问题可能更加注重实际应用和问题解决能力。笔试通常旨在考察候选人的基础理论知识、问题分析能力、电路设计与调试经验、以及对相关工具和方法
- 特斯拉及新能源车企笔试面试题型解析下
启芯硬件笔记
经验分享硬件工程嵌入式硬件技术提升面试职场和发展
特斯拉及新能源车企笔试面试题型解析下本专栏预计更新90期左右。当前第22期-特斯拉硬件.由于特斯拉的招聘信息保密,本文根据公开的特斯拉硬件工程师面试经验、招聘需求以及行业通用技术领域,并提供详细的题目解析思路和方法,以期为准备特斯拉硬件工程师职位的候选人提供有价值的参考、总结、和经验分享,结合特斯拉的电动汽车和自动驾驶技术特点,给出可能涉及的题目,并提供详细解析。随着技术的飞速发展和特斯拉业务的不
- C++ OpenCV4 实现鱼眼镜头矫正
朝风工作室
c++开发语言
一、为什么需要鱼眼镜头矫正?鱼眼镜头通过特殊的光学设计实现180°甚至更广的视野,广泛应用于全景相机、自动驾驶、安防监控等领域。但这种广角特性会引入严重的桶形畸变:直线边缘会向内弯曲(如图像边缘的门框变成弧线),物体尺寸在边缘区域会被拉伸。矫正的核心目标:将鱼眼镜头拍摄的畸变图像还原为接近人眼视觉的正常图像,便于后续的目标检测、图像拼接等处理。矫正前后效果对比(此处可插入图片)矫正前图像(鱼眼畸变
- Spring IoC&DI
無限進步island
springjava后端
一、Spring家族Spring=超级工厂(管理对象生命周期)SpringMVC=快递小哥(处理HTTP请求/响应)SpringBoot=智能工具箱(一键集成全家桶)类比:Spring是汽车发动机(动力核心)SpringMVC是方向盘+油门(控制方向)SpringBoot是自动驾驶系统(简化操作)二、IoC:颠覆传统的控制艺术传统开发(自己造车):Carcar=newCar();//亲手造发动机c
- cnn 一维时序数据_AI顶会解读|时序动作分割与检测,附代码链接
时序动作分割与检测时序动作的分割与检测是视频计算机视觉技术的一大常规任务,对自动驾驶和机器人等应用至关重要,下面3篇论文是腾讯AILab在这一方向的探索成果。1.动作识别中的时序帧间差异表征学习TemporalDistinctRepresentationLearningforActionRecognition本文由腾讯AILab、腾讯优图实验室、新加坡南洋理工大学、美国纽约州立大学布法罗分校合作完
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR