Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26

超详细——CNN卷积神经网络教程(零基础到实战)

相关链接:

实战项目——基于pytorch的深度学习花朵种类识别项目完整教程(内涵完整文件和代码)

大白话pytorch基本知识点及语法+项目实战

文章目录

  • 超详细——CNN卷积神经网络教程(零基础到实战)
    • CNN
      • 知识点:
      • K近邻算法:(有缺点,神经网络弥补了)
      • 传统神经网络层级结构(nn,二维):
      • 数据预处理:
      • 前向传播:
        • 神经网络基础线性函数:(计算得分值)
        • 损失函数L:
          • 计算损失值:
          • softmax分类器->得各类概率值:
      • 反向传播:
      • 卷积神经网络(cnn,三维):
        • 卷积层:
        • 池化层:

CNN

知识点:

较好数据集:CIFAR-10 数据集

机器学习流程:数据获取、特征提取、建立模型、评估与应用

深度学习特征:数据特征决定了模型的上限、算法与参数选择决定了

神经网络作用:自动进行各种特征提取

神经网络目标:更新w权值矩阵

神经网络矩阵计算:都是内积计算,两矩阵对应位置相乘然后相加

神经网络包括两部分:前向传播和反向传播

回归任务:得分值->损失值

概率任务:概率值->损失值

pytorch是实现cnn的一种方法

如何逼近这个上限、预处理和特征提取是最核心的

K近邻算法:(有缺点,神经网络弥补了)

计算流程:

1.计算已知类别数据集中的点与当前点的距离

2.按照距离依次排序

3.选取与当前点距离最小的K个点

4.确定前K个点所在类别的出现概率

5.返回前K个点出现频率最高的类别作为当前点预测分类

k近邻进行的图像识别,用测试照片和众多训练照片各个对应像素点相减,得到的差值矩阵各个数据的总和最小的,则测试图片和该训练图片一种类别。

Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26_第1张图片

缺点:不能分清哪个是主体,哪个是背景,干扰太大

传统神经网络层级结构(nn,二维):

隐层神经元数量越多效果越好,但太多容易出现过拟合

非线性变换用的激活函数

全连接层不能搞三维

Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26_第2张图片

数据预处理:

参数初始化:初始化权值矩阵(随机生成)

请添加图片描述

数据标准化:

Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26_第3张图片

前向传播:

神经网络基础线性函数:(计算得分值)

F(Xi,w,b)= w*xi + b

w 权值矩阵是不断优化出来的,初始化一个随机的

Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26_第4张图片

损失函数L:

计算损失值:

Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26_第5张图片

Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26_第6张图片

Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26_第7张图片

max(0,(该预测的各个类别的概率的最大值 - 正确种类的预测值 + 1 ))

0和该项取一个大值,+1 是容错值,即正确类别比其他类别的最大值要大1才行

R(w)是防止过拟合,即(1,0,0,0)和(0.25,0.25,0.25,0.25),前者可能恰好这张图拟合的很好,但肯定不行,加入平方项让其变成大值被去掉

Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26_第8张图片

softmax分类器->得各类概率值:

Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26_第9张图片

反向传播:

用结果对相关参数分别做偏导,可以得到该参数对结果的影响

Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26_第10张图片

卷积神经网络(cnn,三维):

得到几个类别的概率值

输入层->卷积层(提取特征)->激活函数(非线性处理,卷积操作后必须有这一步)->(几次)池化层(压缩特征)->全连接层(加上权重,输入层和隐层的矩阵运算)

卷积神经网络架构:

Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26_第11张图片

卷积层:

一般卷积是3*3核,步长为1

要得到几个特征值就选几个卷积核

三个通道分别计算然后加在一起

相乘(做内积)后要 + b(偏置项)

绿色的为一次卷积得到的特征图(filter)

Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26_第12张图片

Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26_第13张图片

Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26_第14张图片

池化层:

Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26_第15张图片
推荐B站看一下唐宇迪讲解,很通俗易懂
4天教会你深度学习|Opencv+PyTorch+CNN+Python入门到实战课程

Deep Learning:超详细——CNN卷积神经网络教程(零基础到实战):2021-08-26_第16张图片
关注博主,分享学习教程,一起HappyCodeing

你可能感兴趣的:(Deep,Learning,神经网络,cnn,深度学习,python,人工智能)