CSDN ARIMA R语言_工具&方法 | “名牌包”:面板、时间序列模型常用R语言包

计量经济学是数学、统计技术和经济分析的综合,即运用数学、统计方法和相关经济理论,通过计量模型来揭示经济数量关系和规律。R语言包,已经实现了现代计量经济学的很多统计分析功能,下面从面板数据模型和时间序列模型简要介绍R语言相关程序包:

1.面板数据模型,Panel data models,23个包
2.时间序列模型,Time series data and models,19个包

面板数据模型 Panel data models

  • 1)面板标准误,Panel standard errors

stats包:一般的方法是用stats包中函数,如 lm()或者glm(),对混合截面模型进行估计。

sandwich包:提供了稳健性标准误的估算

https://cloud.r-project.org/web/packages/sandwich/index.html

clusterSEs包:计算聚类稳健的p值和置信区间

https://cloud.r-project.org/web/packages/clusterSEs/index.html

pcse包:面板校正标准误估计

https://cloud.r-project.org/web/packages/pcse/index.html

clubSandwich包:最小样本校正的稳健性聚类方差估计

https://cloud.r-project.org/web/packages/clubSandwich/index.html

  • 2)线性面板模型,Linear panel models

plm包:面板数据线性模型,包括动态面板模型

https://cloud.r-project.org/web/packages/plm/index.html

Paneldata包:固定效应模型和随机效应模型

https://cloud.r-project.org/web/packages/Paneldata/index.html

OrthoPanels包:固定效应动态面板模型

https://cloud.r-project.org/web/packages/OrthoPanels/index.html

feisr包:提供固定效应个体斜率模型(fixed effects individual slope models)

https://cloud.r-project.org/web/packages/feisr/index.html

panelr包:提供中间(或混合)面板模型,包括多层、GEE和贝叶斯等模型

https://cloud.r-project.org/web/packages/panelr/index.html

panelvar包:面板向量自回归

https://cloud.r-project.org/web/packages/panelvar/index.html

  • 3)广义估计方程和GLM,Generalized estimation equations and GLMs

pglm包:提供了面板数据GLM-like模型估计

https://cloud.r-project.org/web/packages/pglm/index.html

geepack包:广义估计方程包,如GEE模型

https://cloud.r-project.org/web/packages/geepack/index.html

  • 4)混合效应模型,Mixed effects models

lme4包:线性混合效应模型

https://cloud.r-project.org/web/packages/lme4/index.html

nlme包:线性和非线性混合效应模型

https://cloud.r-project.org/web/packages/nlme/index.html

  • 5)工具变量,Instrumental variables

ivfixed包:工具变量固定效应面板模型

https://cloud.r-project.org/web/packages/ivfixed/index.html

ivpanel包:工具变量面板模型,适合固定效应、随机效应和两者

https://cloud.r-project.org/web/packages/ivpanel/index.html

  • 6)差异时间趋势,Heterogeneous time trends

phtt包:当未观察到的异质性影响随时间变化时,提供了分析具有较大维度n和T的面板数据的可能性

https://cloud.r-project.org/web/packages/phtt/index.html

  • 7)其他,Miscellaneous

wahc包:固定效应面板模型中的自相关和异方差校正

https://cloud.r-project.org/web/packages/wahc/index.html

panelAR包:具有横断面异方差或相关性的线性AR(1)面板模型的估计

https://cloud.r-project.org/web/packages/panelAR/index.html

PANICr包:非平稳性的PANIC测试

https://cloud.r-project.org/web/packages/PANICr/index.html

pdR包:面板数据中的单位根检验

https://cloud.r-project.org/web/packages/pdR/index.html

pampe包:用于方案评估的面板数据方法

https://cloud.r-project.org/web/packages/pampe/index.html

时间序列模型 Time series data and models

  • 1)规则间隔时间序列的设置,Infrastructure for regularly spaced time series

stats包:封装在stats包中的“ts”对规则间隔时间序列的设置,用于年、季和月度等数据

zoo包:封装在zoo包中的"zooreg",构造规则时间序列对象

https://cloud.r-project.org/web/packages/zoo/index.html

  • 2)不规则间隔时间序列的设置,Infrastructure for irregularly spaced time series

zoo包:提供规则和不规则间隔时间序列的基础结构

https://cloud.r-project.org/web/packages/zoo/index.html

xts包:可扩展时间序列,基于时间数据进行统一处理

https://cloud.r-project.org/web/packages/xts/index.html

  • 3)经典的时间序列模型,Classical time series models

stats包:使用ar()和ARIMA建模来估算简单的自回归模型,使用arima()进行Box-Jenkins类型分析

forecast包:时间序列和线性模型的预测功能

https://cloud.r-project.org/web/packages/forecast/index.html

  • 4)线性回归模型,Linear regression models

dynlm包:动态线性回归

https://cloud.r-project.org/web/packages/dynlm/index.html

nlme包:使用nlme的gls()通过GLS进行带有AR误差项的线性回归模型

https://cloud.r-project.org/web/packages/nlme/index.html

  • 5)结构时间序列模型,Structural time series models

stats包:标准模型可用stats包中StructTS()函数

  • 6)筛选和分解,Filtering and decomposition

stats包:decompose() 和 HoltWinters()

  • 7)向量自回归,Vector autoregression*

stats包:简单模型用stats包中的 ar()

vars 包:提供更详细的模型,包括回归诊断、可视化功能

https://cloud.r-project.org/web/packages/vars/index.html

panelvar包:面板数据中向量自回归

https://cloud.r-project.org/web/packages/panelvar/index.html

  • 8)单位根和协整检验,Unit root and cointegration tests

urca包:时间序列数据的单位根和协整检验

https://cloud.r-project.org/web/packages/urca/index.html

tseries包:时间序列分析与计算

https://cloud.r-project.org/web/packages/tseries/index.html

CADFtest包:协变量Dickey-Fuller单位根检验

https://cloud.r-project.org/web/packages/CADFtest/index.html

pco包:面板协整检验

https://cloud.r-project.org/web/packages/pco/index.html

  • 9)其他,Miscellaneous

tsDyn包:阈值和平滑转换模型

https://cloud.r-project.org/web/packages/tsDyn/index.html

PSTR 包:面板平滑转换回归模型

https://cloud.r-project.org/web/packages/PSTR/index.html

midasr包:MIDAS回归和其他混合频率时间序列数据分析

https://cloud.r-project.org/web/packages/midasr/index.html

gets包:General-to-Specific (GETS)模型和指标饱和度方法

https://cloud.r-project.org/web/packages/gets/index.html

tsfa包:时间序列因子分析

https://cloud.r-project.org/web/packages/tsfa/index.html

bimets包:联立方程模型对时间序列数据进行计量经济学建模

https://cloud.r-project.org/web/packages/bimets/index.html

dlsem包:分布滞后线性结构方程模型

https://cloud.r-project.org/web/packages/dlsem/index.html

apt包:非对称价格传递模型

https://cloud.r-project.org/web/packages/apt/index.html

注:文中所列出R语言包,均参考CRAN Task Views官网信息,获取全文详细内容,请点击阅读原文进行查阅!

文章首发于公众号数据Seminar

工具&方法 | “名牌包”:面板、时间序列模型常用R语言包​mp.weixin.qq.com
CSDN ARIMA R语言_工具&方法 | “名牌包”:面板、时间序列模型常用R语言包_第1张图片

更多精彩内容请关注公众号数据Seminar

CSDN ARIMA R语言_工具&方法 | “名牌包”:面板、时间序列模型常用R语言包_第2张图片

你可能感兴趣的:(CSDN,ARIMA,R语言,go语言,第三方包安装方法,R语言,包,r语言结构方程模型可视化)