yolov5 train.py

知乎博客:yolov5代码解读-训练 - 知乎

前面跳过,到Config

加载图像路径和类别信息

 #Config
        plots = not evolve   # create plots(创建图)  evolve-----evolve hyperparameters for x generations
        #为x个generations进化超参数
        cuda = device.type != 'cpu'
        init_seeds(1 + RANK)   #这里RANK到底是什么东西
        with torch_distributed_zero_first(LOCAL_RANK):     #  这也看不懂
            data_dict = data_dict or check_dataset(data)   # check if None
        train_path, val_path = data_dict['train'], data_dict['val']
        nc = 1 if single_cls else int(data_dict['nc'])     # number of classes
        names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
        assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}'    #  check
        is_coco =data.endswith('coco.yaml') and nc == 80   #COCO dataset

这一段是先设置了随机种子,然后记载data.yaml数据,读进来训练图像和测试图像的地址。在数据处理部分已经说过了,标签的地址是根据图像的地址替换掉‘imges’为'labels'得到的。所以这里只需要度图像地址就可以了。

这面这个就是data.yaml中的数据。

yolov5 train.py_第1张图片

 torch_distributed_zero_first函数解读(utils/torch_utils.py)

pytorch在分布式训练过程中,对于数据的读取是采用主进程预读取并缓存,然后其它进程从缓存中读取,不同进程之间的数据同步具体通过torch.distributed.barrier()实现。

def torch_distributed_zero_first(local_rank: int):
    """
    Decorator to make all processes in distributed training wait for each local_master to do something.
    这个Decorator(装饰器)是让分布式训练中所有等待local_master的进程做点什么
    """
    if local_rank not in [-1, 0]:
       dist.barrier(device_ids=[local_rank])
    yield
    if local_rank == 0:
       dist.barrier(device_ids=[0])

torch_distributed_zero_first是在create_dataloader函数中调用的,如果执行create_dataloader()函数的进程不是主进程,即rank不等于0或者-1,上下文管理器会执行相应的torch.distributed.barrier(),设置一个阻塞栅栏,让此进程处于等待状态,等待所有进程到达栅栏处(包括主进程数据处理完毕);

如果执行create_dataloader()函数的进程是主进程,其会直接去读取数据并处理,然后其处理结束之后会接着遇到torch.distributed.barrier(),此时,所有进程都到达了当前的栅栏处,这样所有进程就达到了同步,并同时得到释放。

 加载模型

之后就是加载模型了。一般都是需要用预训练模型的,如果没有预训练权重,就从之前解读的Model哪里创建一个新的model。如果有预训练权重,就加载一下。

# Model
        check_suffix(weights, '.pt')  # check weights
        pretrained = weights.endswith('.pt')
        if pretrained:
            with torch_distributed_zero_first(LOCAL_RANK):
                weights = attempt_download(weights)  # download if not found locally
            ckpt = torch.load(weights, map_location=device)   # load checkpoint(加载检查点)
            model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  #create
            exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []    # exclude keys(排除keys)
            #上面这三行没看懂要干嘛,大概知道一点而已
            csd = ckpt['model'].float().state_dict()   #  checkpoint state_dict as FP32  这里什么意思又没看懂
            csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)   # 这里把csd又重写了,还是没看懂
            model.load_state_dict(csd, strict=False)   #  load    什么是state_dict
            LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}')  # report
        else :
            model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  #create

迁移学习

这一部分是做迁移学习的,也就是当数据量的时候,尝试冻住前面一些层,让他们不再更新了。但是据说没有必要。但是这段代码还是可以看看的,k是索引,v是具体的参数。如果确定freeze中的层数,有在k中的,或者说,k有在freeze中的,那么就把这层相关的v冻结,不再进行梯度下降和参数更新。

    # Freeze
    freeze = [f'model.{x}.' for x in range(freeze)]  # layers to freeze
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print(f'freezing {k}')
            v.requires_grad = False

下面是 Image size 和 Batch size

 # Image size
        gs = max(int(model.stride.max()), 32)   # grid size (max stride)   这里也看不懂
        imgsz = check_img_size(opt.imgsz, gs, floor= gs * 2)  #verify imgsz is gs-multiple

        # Batch size
        if RANK == -1 and batch_size == -1:   # single-GPU only, estimate best batch size  自动估算batch_size
            batch_size = check_train_batch_size(model, imgsz)

 Optimizer

# Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    g0, g1, g2 = [], [], []  # optimizer parameter groups
    for v in model.modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):  # bias
            g2.append(v.bias)
        if isinstance(v, nn.BatchNorm2d):  # weight (no decay)
            g0.append(v.weight)
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):  # weight (with decay)
            g1.append(v.weight)

    if opt.adam:
        optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    else:
        optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

    optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']})  # add g1 with weight_decay
    optimizer.add_param_group({'params': g2})  # add g2 (biases)
    LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
                f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias")
    del g0, g1, g2

hasattr()函数

返回对象是否具有给定名称的属性。这里是看v里面是否有bias

Adam

pytorch优化器详解:Adam_拿铁大侠的博客-CSDN博客

SGD

随机梯度下降,具体的函数以后查 

Scheduler

# Scheduler
    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)

 lambda

见笔记

one_cycle()

cosine步长衰减

def one_cycle(y1=0.0, y2=1.0, steps=100):
    # lambda  function for sinusoidal ramp(正弦坡道) from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
    return lambda  x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1

 lr_scheduler:调整学习率

torch.optim.lr_scheduler:调整学习率_qyhaill的博客-CSDN博客_lr_scheduler

EMA

  #EMA
        ema = ModelEMA(model) if RANK in [-1,0] else None

EMA:

指数移动平均(EMA)的原理及PyTorch实现_zhang2010hao的博客-CSDN博客_指数移动平均

Resume

# Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if resume:
            assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
        if epochs < start_epoch:
            LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, csd

start_epoch, best_fitness

load_state_dict()

loads the optimizer state(加载优化器状态)

多机多卡 

# DP mode
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
                        'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
        model = torch.nn.DataParallel(model)
  • DP模式:单机多卡,但是这个情况也会出现一些问题,例如主卡爆掉,其他卡利用率上不去。当然,这是要修改底层和与硬件相关的问题,怎么优化还得靠人家框架官方。
  • DDP模式:多机多卡,能解决DP不均衡,主卡爆掉的问题,也就是单机多卡也能用,但是这个一般人也用不到,家里有条件的时候再去研究吧。

SyncBatchNorm

# SyncBatchNorm
        if opt.sync_bn and cuda and RANK != -1:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
            LOGGER.info('Using SyncBatchNorm()')

opt里面有这个参数,可以注意一下这个是什么功能

RANK 

RANK = -1 和 RANK = 0 分别对应什么情况 

Trainloader

# Trainloader
    train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
                                              hyp=hyp, augment=True, cache=opt.cache, rect=opt.rect, rank=LOCAL_RANK,
                                              workers=workers, image_weights=opt.image_weights, quad=opt.quad,
                                              prefix=colorstr('train: '))
    mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max())  # max label class
    nb = len(train_loader)  # number of batches
    assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'

WORLD_SIZE

batch_size // WORLD_SIZE 算什么?? 

WORLD_SIZE = int(os.getenv('WORLD_SIZE',1)) 

getenv():

def getenv(key, default=None):
    """Get an environment variable, return None if it doesn't exist.
        获取一个环境变量,如果不存在返回None
    The optional second argument can specify an alternate default.
    可选的第二个参数可以指定一个备用默认值。
    key, default and the result are str.(都是str)
    """
    return environ.get(key, default)

gs 

grid size (max stride)网格大小(最大步长)

augment(增加) 

什么意思呢 

cache(缓存)

--cache images in "ram" (default) or "disk"

LOCA_RANK

??

np.concatenate

numpy.concatenate()函数_人类高质量算法工程狮的博客-CSDN博客

Process 0

# Process 0
    if RANK in [-1, 0]:
        val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,
                                       hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1,
                                       workers=workers, pad=0.5,
                                       prefix=colorstr('val: '))[0]

        if not resume:
            labels = np.concatenate(dataset.labels, 0)
            # c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

        callbacks.run('on_pretrain_routine_end')

 plot_labels(labels, names, save_dir)

函数定义在utils/plots.py中,应该是处理labels的,name是label的名字,这里比较奇怪的是save_dir是从opt.save_dir中传过来的,但是在train.py的opt里面没有找到save_dir,而且save_dir在train.py中多次使用,在最上面opt.save_dir点到了loggers里面,但Logger定义的时候也是用的save_dir传进去,套娃

Anchors部分

opt.noautoanchor根本找不到,怀疑这部分是被淘汰了

check_anchors()

这是写在utils的antoanchor中,Check anchor fit to data, recompute if necessary

DDP mode

# DDP mode    这个好像是线程对齐的模式
        if cuda and RANK != -1:
            model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)

Model patameters

# Model parameters
    nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)
    hyp['box'] *= 3 / nl  # scale to layers
    hyp['cls'] *= nc / 80 * 3 / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

 de_parallel()

在utils/torch_utils.py  

def de_parallel(model):
    # De-parallelize a model: returns single-GPU model if model is of type DP or DDP
    return model.module if is_parallel(model) else model

 这里de_parallel(model).model[-1].nl   -1是什么意思,按照列表的规则应该是最后一位?

model[-1].nl 

self.nl = len(anchors)  # number of detection layers

还是不太理解这里放anchors,还有detection layers指哪些,还有为什么就能scale hyps了,是hyps里面经常用到吗??

你可能感兴趣的:(目标检测,深度学习,人工智能)