Minimum Size Subarray Sum

https://leetcode.com/problems/minimum-size-subarray-sum/

Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return 0 instead.

For example, given the array [2,3,1,2,4,3] and s = 7,
the subarray [4,3] has the minimal length under the problem constraint.

解题思路:

比较典型的滑动窗口(双指针)题目。

如果sum<s,右侧指针右移,左侧不动。

如果sum>=s,立刻计算当前窗口宽度,并且左侧指针右移,缩小窗口面积,直到sum<s。并且这期间不断计算sum和宽度。

public class Solution {

    public int minSubArrayLen(int s, int[] nums) {

        int res = 0;

        int start = 0, sum = 0;

        for(int i = 0; i < nums.length; i++) {

            sum += nums[i];

            if(sum >= s) {

                // res = Math.min(res, i - start + 1);

                while(sum >= s && start <= i) {

                    if(res == 0) {

                        res = i - start + 1;

                    } else {

                        res = Math.min(res, i - start + 1);

                    }

                    sum = sum - nums[start];

                    start++;

                }

            }

        }

        return res;

    }

}

上面算法的时间复杂度为O(n)。为什么两层循环时间复杂度还是O(n),而不是O(n^2)?因为内层while的执行次数总计最多才n次,所以n+n=2n,而不是n*n。

你可能感兴趣的:(array)