Spark源码阅读02-Spark核心原理之作业执行原理

概述

Spark的作业调度主要是指基于RDD的一系列操作构成的一个作业,在Executor中执行的过程。其中,在Spark作业调度中最主要的是DAGScheduler和TaskScheduler两个调度器的执行。这两个调度器的主要任务如下:

  • DAGScheduler负责任务逻辑调度,将作业拆分成不同阶段的具有依赖关系的任务集
  • TaskScheduler负责具体任务的调度执行

下图是Spark的作业和任务调度系统:

Spark源码阅读02-Spark核心原理之作业执行原理_第1张图片
上图的具体过程详细介绍如下:

  • (1)Spark应用程序进行各种各样转换操作,通过行动操作触发作业执行,提交之后根据RDD之间的依赖关系构建DAG图,DAG图提交给DAGScheduler进行解析
  • (2)DAGScheduler是面向调度阶段的高层次的调度器,DAGScheduler把DAG拆分成相互依赖的调度阶段,拆分调度阶段是以RDD的依赖是否是宽依赖,当遇到宽依赖就划分为新的调度阶段。每个调度阶段包含一个或多个任务,这些任务形成任务集,提交给底层调度器TaskScheduler进行调度运行。另外,DAGScheduler记录哪些RDD被存入磁盘等,同时其寻求任务的最优化调度;监控运行调度阶段过程,如果某个调度阶段运行失败,则需要重新提交该调度阶段。
  • (3)每个TaskScheduler只为一个SparkContext实例服务,TaskScheduler接收到来自DAGScheduler发过来的任务集,TaskScheduler收到任务集后负责把任务集以任务的形式一个个分发到集群Worker节点的Executor去运行。如果某个任务运行失败,TaskScheduler要负责重试。另外,如果TaskScheduler发现某个任务一直没有执行完,就可能启动同样的任务同时运行,这两个任务哪个先执行完就先用哪个。
  • (4)Worker中的Executor收到TaskScheduler发送过来的任务后,以多线程的方式运行,每个线程负责一个任务。任务运行介绍后要返回给TaskScheduler,不同类型的任务,返回的方式也不同。

为了更好的展示作业和任务调度方法之间的调用关系,画出了独立运行模式下的Spark系统实现类图,具体流程如下:
Spark源码阅读02-Spark核心原理之作业执行原理_第2张图片

提交作业

对于RDD来说,它们会根据彼此之间的依赖关系形成一个有向无环图(DAG),然后把这个DAG图交个DAGScheduler处理。SparkContext的runJob方法经过几次调用后,进入DAGScheduler的runJob方法,其中SparkContext中调用DAGScheduler类runJob方法代码如下:

 def runJob[T, U: ClassTag](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      resultHandler: (Int, U) => Unit): Unit = {
     
    if (stopped.get()) {
     
      throw new IllegalStateException("SparkContext has been shutdown")
    }
    val callSite = getCallSite
    val cleanedFunc = clean(func)
    logInfo("Starting job: " + callSite.shortForm)
    if (conf.getBoolean("spark.logLineage", false)) {
     
      logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
    }
    //调用dagScheduler的runJob进行处理
    dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
    progressBar.foreach(_.finishAll())
    rdd.doCheckpoint()
  }

然后在DAGScheduler类内部进行一系列的方法调用,代码如下:

def submitJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      resultHandler: (Int, U) => Unit,
      properties: Properties): JobWaiter[U] = {
     
    // Check to make sure we are not launching a task on a partition that does not exist.
    //判断任务是否存在,如果不存在,则抛出异常
    val maxPartitions = rdd.partitions.length
    partitions.find(p => p >= maxPartitions || p < 0).foreach {
      p =>
      throw new IllegalArgumentException(
        "Attempting to access a non-existent partition: " + p + ". " +
          "Total number of partitions: " + maxPartitions)
    }

    //如果作业只包含0个对象,则创建0个任务的JobWaiter,并立即返回
    val jobId = nextJobId.getAndIncrement()
    if (partitions.size == 0) {
     
      // Return immediately if the job is running 0 tasks
      return new JobWaiter[U](this, jobId, 0, resultHandler)
    }

    assert(partitions.size > 0)
    //创建JobWaiter对象,等待作业运行完,使用内部类提交作业
    val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
    val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
    eventProcessLoop.post(JobSubmitted(
      jobId, rdd, func2, partitions.toArray, callSite, waiter,
      SerializationUtils.clone(properties)))
    waiter
  }

划分调度阶段

Spark调度阶段的划分是由DAGScheduler实现的,DAGScheduler会从最后一个RDD出发,使用广度优先遍历整个依赖树,从而划分调度阶段。调度阶段的划分是以操作是否为宽依赖(ShuffleDependency)进行的,即当某个RDD的操作室Shuffle时,以该Shufflle操作为界限划分前后两个调度阶段。代码实现如下:

private[scheduler] def handleJobSubmitted(jobId: Int,
      finalRDD: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      callSite: CallSite,
      listener: JobListener,
      properties: Properties) {
     
    //根据最后一个RDD回溯,获取最后一个调度阶段finalStage
    var finalStage: ResultStage = null
    try {
     
      // New stage creation may throw an exception if, for example, jobs are run on a
      // HadoopRDD whose underlying HDFS files have been deleted.
      finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
    } catch {
     
      case e: BarrierJobSlotsNumberCheckFailed =>
        logWarning(s"The job $jobId requires to run a barrier stage that requires more slots " +
          "than the total number of slots in the cluster currently.")
        // If jobId doesn't exist in the map, Scala coverts its value null to 0: Int automatically.
        val numCheckFailures = barrierJobIdToNumTasksCheckFailures.compute(jobId,
          new BiFunction[Int, Int, Int] {
     
            override def apply(key: Int, value: Int): Int = value + 1
          })
        if (numCheckFailures <= maxFailureNumTasksCheck) {
     
          messageScheduler.schedule(
            new Runnable {
     
              override def run(): Unit = eventProcessLoop.post(JobSubmitted(jobId, finalRDD, func,
                partitions, callSite, listener, properties))
            },
            timeIntervalNumTasksCheck,
            TimeUnit.SECONDS
          )
          return
        } else {
     
          // Job failed, clear internal data.
          barrierJobIdToNumTasksCheckFailures.remove(jobId)
          listener.jobFailed(e)
          return
        }

      case e: Exception =>
        logWarning("Creating new stage failed due to exception - job: " + jobId, e)
        listener.jobFailed(e)
        return
    }
    // Job submitted, clear internal data.
    barrierJobIdToNumTasksCheckFailures.remove(jobId)

    //根据最后一个调度阶段finalStage生成作业
    val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
    clearCacheLocs()
    logInfo("Got job %s (%s) with %d output partitions".format(
      job.jobId, callSite.shortForm, partitions.length))
    logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
    logInfo("Parents of final stage: " + finalStage.parents)
    logInfo("Missing parents: " + getMissingParentStages(finalStage))

    val jobSubmissionTime = clock.getTimeMillis()
    jobIdToActiveJob(jobId) = job
    activeJobs += job
    finalStage.setActiveJob(job)
    val stageIds = jobIdToStageIds(jobId).toArray
    val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
    listenerBus.post(
      SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
    //提交执行
    submitStage(finalStage)
  }

获取或创建给定RDD的父阶段列表。将使用提供的firstJobId创建新阶段

 private def getOrCreateParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = {
     
    getShuffleDependencies(rdd).map {
      shuffleDep =>
      getOrCreateShuffleMapStage(shuffleDep, firstJobId)
    }.toList
  }

当finalRDD存在父调度阶段,需要从发生Shuffle操作的RDD往前遍历,找出所有的ShuffleMapStage,这是调度阶段的关键部分。其由getShuffleDependencies方法实现。

private[scheduler] def getShuffleDependencies(
      rdd: RDD[_]): HashSet[ShuffleDependency[_, _, _]] = {
     
    val parents = new HashSet[ShuffleDependency[_, _, _]]
    val visited = new HashSet[RDD[_]]

    //存放等待访问的堆栈,存放的是非ShuffleDependency的RDD
    val waitingForVisit = new ArrayStack[RDD[_]]


    waitingForVisit.push(rdd)
    while (waitingForVisit.nonEmpty) {
     
      val toVisit = waitingForVisit.pop()
      if (!visited(toVisit)) {
     
        visited += toVisit
        toVisit.dependencies.foreach {
     
              //所依赖的RDD操作是ShuffleDependency的RDD,作为划分shuffleMap调度阶段界限
          case shuffleDep: ShuffleDependency[_, _, _] =>
            parents += shuffleDep
          case dependency =>
            waitingForVisit.push(dependency.rdd)
        }
      }
    }
    parents
  }

当所有的调度阶段划分结束后,这些调度阶段建立起依赖关系。该依赖关系是通过调度阶段其中属性parents:List[Stage]来定义的,通过这些属性可以获取当前阶段所有祖先阶段,可以根据这些信息按照顺序提交调度阶段进行运行。

提交调度阶段

在DAGScheduler的handleJobSubmitted方法中,生成finalStage的同时建立起所有调度阶段的依赖关系,然后通过finalStage生成一个作业实例,在该作业实例中按照顺序提交调度阶段进行执行,在执行过程中通过监听总线获取作业、阶段执行情况。代码实现如下:

private def submitStage(stage: Stage) {
     
    val jobId = activeJobForStage(stage)
    if (jobId.isDefined) {
     
      logDebug("submitStage(" + stage + ")")
      if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
     
        //在该方法中,获取该调度阶段的父调度阶段,获取的方法是通过RDD的依赖关系向前遍历看
        //是否存在Shuffle操作,这里并没有使用调度阶段的依赖关系获取
        val missing = getMissingParentStages(stage).sortBy(_.id)
        logDebug("missing: " + missing)
        if (missing.isEmpty) {
     
          //如果不存在父调度阶段,直接把该调度阶段提交执行
          logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
          submitMissingTasks(stage, jobId.get)
        } else {
     
          //如果存在父调度阶段,把该阶段加入到等待运行调度阶段列表中,
          //同时递归调用submitStage方法,直至找到开始的调度阶段,即该调度阶段没有父调度阶段
          for (parent <- missing) {
     
            submitStage(parent)
          }
          waitingStages += stage
        }
      }
    } else {
     
      abortStage(stage, "No active job for stage " + stage.id, None)
    }
  }

当入口的调度阶段运行完成后相继提交后续调度阶段,在调度前先判断该调度阶段所依赖的父调度阶段的结果是否可用。通过ShuffleMapTask实现上述判断。代码实现如下:

private[scheduler] def handleTaskCompletion(event: CompletionEvent) {
     
	...
	case smt: ShuffleMapTask =>
	            val shuffleStage = stage.asInstanceOf[ShuffleMapStage]
	            shuffleStage.pendingPartitions -= task.partitionId
	            val status = event.result.asInstanceOf[MapStatus]
	            val execId = status.location.executorId
	            logDebug("ShuffleMapTask finished on " + execId)
	            if (failedEpoch.contains(execId) && smt.epoch <= failedEpoch(execId)) {
     
	              logInfo(s"Ignoring possibly bogus $smt completion from executor $execId")
	            } else {
     
	              // The epoch of the task is acceptable (i.e., the task was launched after the most
	              // recent failure we're aware of for the executor), so mark the task's output as
	              // available.
	              mapOutputTracker.registerMapOutput(
	                shuffleStage.shuffleDep.shuffleId, smt.partitionId, status)
	            }
	
	            //如果当前调度阶段在运行调度阶段列表中,并没有任务处于挂起状态(均已完成),则标记
	            //该调度阶段已经完成并注册输出结果的位置
	            if (runningStages.contains(shuffleStage) && shuffleStage.pendingPartitions.isEmpty) {
     
	              markStageAsFinished(shuffleStage)
	              logInfo("looking for newly runnable stages")
	              logInfo("running: " + runningStages)
	              logInfo("waiting: " + waitingStages)
	              logInfo("failed: " + failedStages)
	
	              // This call to increment the epoch may not be strictly necessary, but it is retained
	              // for now in order to minimize the changes in behavior from an earlier version of the
	              // code. This existing behavior of always incrementing the epoch following any
	              // successful shuffle map stage completion may have benefits by causing unneeded
	              // cached map outputs to be cleaned up earlier on executors. In the future we can
	              // consider removing this call, but this will require some extra investigation.
	              // See https://github.com/apache/spark/pull/17955/files#r117385673 for more details.
	              mapOutputTracker.incrementEpoch()
	
	              clearCacheLocs()
	
	              //如果某些任务执行失败了,则重新提交运行
	              if (!shuffleStage.isAvailable) {
     
	                // Some tasks had failed; let's resubmit this shuffleStage.
	                // TODO: Lower-level scheduler should also deal with this
	                logInfo("Resubmitting " + shuffleStage + " (" + shuffleStage.name +
	                  ") because some of its tasks had failed: " +
	                  shuffleStage.findMissingPartitions().mkString(", "))
	                submitStage(shuffleStage)
	              } else {
     
	                markMapStageJobsAsFinished(shuffleStage)
	                submitWaitingChildStages(shuffleStage)
	              }
	            }
	        }
	        ...
}

提交任务

当调度阶段提交运行后,在DAGScheduler的submitMissingTasks方法中,会根据调度阶段Partition个数拆分对应个数任务,这些任务组成一个任务集提交到TaskScheduler进行处理。对于ResultStage生成ResultTask,对于ShuffleMapStage生成ShuffleMapTask。对于每一个任务集包含了对应调度阶段的所有任务,这些任务处理逻辑完全一样,不同的是对应处理的数据。

private def submitMissingTasks(stage: Stage, jobId: Int) {
     

...

    val tasks: Seq[Task[_]] = try {
     
      val serializedTaskMetrics = closureSerializer.serialize(stage.latestInfo.taskMetrics).array()
      stage match {
     
          //对于ShuffleMapStage生成ShuffleMapTask任务
        case stage: ShuffleMapStage =>
          stage.pendingPartitions.clear()
          partitionsToCompute.map {
      id =>
            val locs = taskIdToLocations(id)
            val part = partitions(id)
            stage.pendingPartitions += id
            new ShuffleMapTask(stage.id, stage.latestInfo.attemptNumber,
              taskBinary, part, locs, properties, serializedTaskMetrics, Option(jobId),
              Option(sc.applicationId), sc.applicationAttemptId, stage.rdd.isBarrier())
          }

          //对于ResultStage生成ResultTask任务
        case stage: ResultStage =>
          partitionsToCompute.map {
      id =>
            val p: Int = stage.partitions(id)
            val part = partitions(p)
            val locs = taskIdToLocations(id)
            new ResultTask(stage.id, stage.latestInfo.attemptNumber,
              taskBinary, part, locs, id, properties, serializedTaskMetrics,
              Option(jobId), Option(sc.applicationId), sc.applicationAttemptId,
              stage.rdd.isBarrier())
          }
      }
    } catch {
     
      ...
    }


    if (tasks.size > 0) {
     
      //把这些任务以任务集的方式提交到taskScheduler
      logInfo(s"Submitting ${tasks.size} missing tasks from $stage (${stage.rdd}) (first 15 " +
        s"tasks are for partitions ${tasks.take(15).map(_.partitionId)})")
      taskScheduler.submitTasks(new TaskSet(
        tasks.toArray, stage.id, stage.latestInfo.attemptNumber, jobId, properties))
    } else {
     
      // Because we posted SparkListenerStageSubmitted earlier, we should mark
      // the stage as completed here in case there are no tasks to run
      //如果调度阶段中不存在任务标记,则表明该调度阶段已经完成
      markStageAsFinished(stage, None)

      stage match {
     
        case stage: ShuffleMapStage =>
          logDebug(s"Stage ${stage} is actually done; " +
              s"(available: ${stage.isAvailable}," +
              s"available outputs: ${stage.numAvailableOutputs}," +
              s"partitions: ${stage.numPartitions})")
          markMapStageJobsAsFinished(stage)
        case stage : ResultStage =>
          logDebug(s"Stage ${stage} is actually done; (partitions: ${stage.numPartitions})")
      }
      submitWaitingChildStages(stage)
    }
  }

当TaskScheduler收到发送过来的任务集时,在sunmitTasks方法中构成一个TaskSetManager的实例,用于管理这个任务集的生命周期,而该TaskSetManager会放入系统的调度池中,根据系统的调度算法进行调度。代码实现如下:

override def submitTasks(taskSet: TaskSet) {
     
    val tasks = taskSet.tasks
    logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
    this.synchronized {
     
      //创建任务集的管理,用于管理这个任务集的声明周期
      val manager = createTaskSetManager(taskSet, maxTaskFailures)
      val stage = taskSet.stageId
      val stageTaskSets =
        taskSetsByStageIdAndAttempt.getOrElseUpdate(stage, new HashMap[Int, TaskSetManager])

 
      stageTaskSets.foreach {
      case (_, ts) =>
        ts.isZombie = true
      }
      stageTaskSets(taskSet.stageAttemptId) = manager
      //将该任务集的管理器加入到系统调度池中,由系统统一调配,该调度器属于应用级别
      //支持FIFO和FAIR(公平调度)两种
      schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)

      if (!isLocal && !hasReceivedTask) {
     
        starvationTimer.scheduleAtFixedRate(new TimerTask() {
     
          override def run() {
     
            if (!hasLaunchedTask) {
     
              logWarning("Initial job has not accepted any resources; " +
                "check your cluster UI to ensure that workers are registered " +
                "and have sufficient resources")
            } else {
     
              this.cancel()
            }
          }
        }, STARVATION_TIMEOUT_MS, STARVATION_TIMEOUT_MS)
      }
      hasReceivedTask = true
    }

    //调用调度器后台进程SparkDeploySchedulerBackend的reviveOffers方法分配资源并运行
    backend.reviveOffers()
  }

在上面的代码中最后会调用reviveOffers方法,该方法先会获取集群中可用的Executor,然后发送到TaskSchedulerImpl中进行对任务集的任务分配运行资源,最后提交到launchTasks方法中。

private def makeOffers() {
     
      // Make sure no executor is killed while some task is launching on it
      val taskDescs = withLock {
     
        // Filter out executors under killing
        //调用集群中可用的Executor列表
        val activeExecutors = executorDataMap.filterKeys(executorIsAlive)
        val workOffers = activeExecutors.map {
     
          case (id, executorData) =>
            new WorkerOffer(id, executorData.executorHost, executorData.freeCores,
              Some(executorData.executorAddress.hostPort))
        }.toIndexedSeq

        //对任务集的任务分配运行资源,并把这些任务提交运行
        scheduler.resourceOffers(workOffers)
      }
      if (!taskDescs.isEmpty) {
     
        launchTasks(taskDescs)
      }
    }

在上述代码中的resourceOffers方法是非常重要的资源分配步骤。在分配的过程中会根据调度策略对TaskSetManager进行排序,然后依次对TaskSetManager按照就近原则分配资源。代码实现如下:

def resourceOffers(offers: IndexedSeq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
     
    // Mark each slave as alive and remember its hostname
    // Also track if new executor is added
    //对传入的可用Executor列表进行处理,记录其信息,如果有新的Executor加入,则进行标记
    var newExecAvail = false
    for (o <- offers) {
     
      if (!hostToExecutors.contains(o.host)) {
     
        hostToExecutors(o.host) = new HashSet[String]()
      }
      if (!executorIdToRunningTaskIds.contains(o.executorId)) {
     
        hostToExecutors(o.host) += o.executorId
        executorAdded(o.executorId, o.host)
        executorIdToHost(o.executorId) = o.host
        executorIdToRunningTaskIds(o.executorId) = HashSet[Long]()
        newExecAvail = true
      }
      for (rack <- getRackForHost(o.host)) {
     
        hostsByRack.getOrElseUpdate(rack, new HashSet[String]()) += o.host
      }
    }

    // Before making any offers, remove any nodes from the blacklist whose blacklist has expired. Do
    // this here to avoid a separate thread and added synchronization overhead, and also because
    // updating the blacklist is only relevant when task offers are being made.
    blacklistTrackerOpt.foreach(_.applyBlacklistTimeout())


    val filteredOffers = blacklistTrackerOpt.map {
      blacklistTracker =>
      offers.filter {
      offer =>
        !blacklistTracker.isNodeBlacklisted(offer.host) &&
          !blacklistTracker.isExecutorBlacklisted(offer.executorId)
      }
    }.getOrElse(offers)

    //为任务随机分配Executor,避免任务集中分配到Worker上
    val shuffledOffers = shuffleOffers(filteredOffers)
    // Build a list of tasks to assign to each worker.
    //用于存储分配好资源任务
    val tasks = shuffledOffers.map(o => new ArrayBuffer[TaskDescription](o.cores / CPUS_PER_TASK))
    val availableCpus = shuffledOffers.map(o => o.cores).toArray
    val availableSlots = shuffledOffers.map(o => o.cores / CPUS_PER_TASK).sum

    //获取按照资源调度策略排序好的TaskSetManager
    val sortedTaskSets = rootPool.getSortedTaskSetQueue

    //如果有新加入的Executor,需要重新计算数据本地性
    for (taskSet <- sortedTaskSets) {
     
      logDebug("parentName: %s, name: %s, runningTasks: %s".format(
        taskSet.parent.name, taskSet.name, taskSet.runningTasks))
      if (newExecAvail) {
     
        taskSet.executorAdded()
      }
    }

    // Take each TaskSet in our scheduling order, and then offer it each node in increasing order
    // of locality levels so that it gets a chance to launch local tasks on all of them.
    // NOTE: the preferredLocality order: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY

    for (taskSet <- sortedTaskSets) {
     
      // Skip the barrier taskSet if the available slots are less than the number of pending tasks.
      if (taskSet.isBarrier && availableSlots < taskSet.numTasks) {
     
        // Skip the launch process.
        // TODO SPARK-24819 If the job requires more slots than available (both busy and free
        // slots), fail the job on submit.
        logInfo(s"Skip current round of resource offers for barrier stage ${taskSet.stageId} " +
          s"because the barrier taskSet requires ${taskSet.numTasks} slots, while the total " +
          s"number of available slots is $availableSlots.")
      } else {
     

        //为分配好的TaskSetManager列表进行分配资源,分配的原则就是就近原则
        //按照顺序PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
        var launchedAnyTask = false
        // Record all the executor IDs assigned barrier tasks on.
        val addressesWithDescs = ArrayBuffer[(String, TaskDescription)]()
        for (currentMaxLocality <- taskSet.myLocalityLevels) {
     
          var launchedTaskAtCurrentMaxLocality = false
          do {
     
            launchedTaskAtCurrentMaxLocality = resourceOfferSingleTaskSet(taskSet,
              currentMaxLocality, shuffledOffers, availableCpus, tasks, addressesWithDescs)
            launchedAnyTask |= launchedTaskAtCurrentMaxLocality
          } while (launchedTaskAtCurrentMaxLocality)
        }

        if (!launchedAnyTask) {
     
          taskSet.getCompletelyBlacklistedTaskIfAny(hostToExecutors).foreach {
      taskIndex =>
            
              executorIdToRunningTaskIds.find(x => !isExecutorBusy(x._1)) match {
     
                case Some ((executorId, _)) =>
                  if (!unschedulableTaskSetToExpiryTime.contains(taskSet)) {
     
                    blacklistTrackerOpt.foreach(blt => blt.killBlacklistedIdleExecutor(executorId))

                    val timeout = conf.get(config.UNSCHEDULABLE_TASKSET_TIMEOUT) * 1000
                    unschedulableTaskSetToExpiryTime(taskSet) = clock.getTimeMillis() + timeout
                    logInfo(s"Waiting for $timeout ms for completely "
                      + s"blacklisted task to be schedulable again before aborting $taskSet.")
                    abortTimer.schedule(
                      createUnschedulableTaskSetAbortTimer(taskSet, taskIndex), timeout)
                  }
                case None => // Abort Immediately
                  logInfo("Cannot schedule any task because of complete blacklisting. No idle" +
                    s" executors can be found to kill. Aborting $taskSet." )
                  taskSet.abortSinceCompletelyBlacklisted(taskIndex)
              }
          }
        } else {
     
        
          if (unschedulableTaskSetToExpiryTime.nonEmpty) {
     
            logInfo("Clearing the expiry times for all unschedulable taskSets as a task was " +
              "recently scheduled.")
            unschedulableTaskSetToExpiryTime.clear()
          }
        }

        if (launchedAnyTask && taskSet.isBarrier) {
     
       
          require(addressesWithDescs.size == taskSet.numTasks,
            s"Skip current round of resource offers for barrier stage ${taskSet.stageId} " +
              s"because only ${addressesWithDescs.size} out of a total number of " +
              s"${taskSet.numTasks} tasks got resource offers. The resource offers may have " +
              "been blacklisted or cannot fulfill task locality requirements.")

          // materialize the barrier coordinator.
          maybeInitBarrierCoordinator()

          // Update the taskInfos into all the barrier task properties.
          val addressesStr = addressesWithDescs
            // Addresses ordered by partitionId
            .sortBy(_._2.partitionId)
            .map(_._1)
            .mkString(",")
          addressesWithDescs.foreach(_._2.properties.setProperty("addresses", addressesStr))

          logInfo(s"Successfully scheduled all the ${addressesWithDescs.size} tasks for barrier " +
            s"stage ${taskSet.stageId}.")
        }
      }
    }

    // TODO SPARK-24823 Cancel a job that contains barrier stage(s) if the barrier tasks don't get
    // launched within a configured time.
    if (tasks.size > 0) {
     
      hasLaunchedTask = true
    }
    return tasks
  }

分配好资源的任务提交到CoarseGrainedSchedulerBackend的launchTasks方法中去,在该方法中会把任务一个个发送到worker阶段上的CoarseGrainedExecutorBackend,然后通过内部的Executor来执行任务,代码实现如下:

private def launchTasks(tasks: Seq[Seq[TaskDescription]]) {
     
      for (task <- tasks.flatten) {
     
        //序列化每一个task
        val serializedTask = TaskDescription.encode(task)
        if (serializedTask.limit() >= maxRpcMessageSize) {
     
          Option(scheduler.taskIdToTaskSetManager.get(task.taskId)).foreach {
      taskSetMgr =>
            try {
     
              var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " +
                "spark.rpc.message.maxSize (%d bytes). Consider increasing " +
                "spark.rpc.message.maxSize or using broadcast variables for large values."
              msg = msg.format(task.taskId, task.index, serializedTask.limit(), maxRpcMessageSize)
              taskSetMgr.abort(msg)
            } catch {
     
              case e: Exception => logError("Exception in error callback", e)
            }
          }
        }
        else {
     
          val executorData = executorDataMap(task.executorId)
          executorData.freeCores -= scheduler.CPUS_PER_TASK

          logDebug(s"Launching task ${task.taskId} on executor id: ${task.executorId} hostname: " +
            s"${executorData.executorHost}.")

          //向worker节点的CoarseGrainedExecutorBackend发送消息执行Task
          executorData.executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask)))
        }
      }
    }

执行任务

当CoarseGrainedExecutorBackend接收到LaunchTask消息时,会调用Executor的launchTask方法进行处理。在Executor的launchTask方法中,初始化一个TaskRunner来封装任务,它用于管理任务运行时的细节,再把TaskRunner对象放入到ThreadPool(线程池)中执行。具体的任务执行在TaskRunner的run方法的前半部分实现,代码如下:

 override def run(): Unit = {
     
      threadId = Thread.currentThread.getId
      Thread.currentThread.setName(threadName)
      val threadMXBean = ManagementFactory.getThreadMXBean

      //生成内存管理taskMemoryManager实例,用于运行期间内存管理
      val taskMemoryManager = new TaskMemoryManager(env.memoryManager, taskId)
      val deserializeStartTime = System.currentTimeMillis()
      val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
     
        threadMXBean.getCurrentThreadCpuTime
      } else 0L
      Thread.currentThread.setContextClassLoader(replClassLoader)
      val ser = env.closureSerializer.newInstance()
      logInfo(s"Running $taskName (TID $taskId)")

      //向Driver终端点发送任务运行开始消息
      execBackend.statusUpdate(taskId, TaskState.RUNNING, EMPTY_BYTE_BUFFER)
      var taskStartTime: Long = 0
      var taskStartCpu: Long = 0
      startGCTime = computeTotalGcTime()

      try {
     
        // Must be set before updateDependencies() is called, in case fetching dependencies
        // requires access to properties contained within (e.g. for access control).


        Executor.taskDeserializationProps.set(taskDescription.properties)

        //对任务运行所需要的文件、Jar包、代码等反序列化
        updateDependencies(taskDescription.addedFiles, taskDescription.addedJars)
        task = ser.deserialize[Task[Any]](
          taskDescription.serializedTask, Thread.currentThread.getContextClassLoader)
        task.localProperties = taskDescription.properties
        task.setTaskMemoryManager(taskMemoryManager)

        // If this task has been killed before we deserialized it, let's quit now. Otherwise,
        // continue executing the task.
        val killReason = reasonIfKilled
        //任务在反序列化之前被杀死,则抛出异常并退出
        if (killReason.isDefined) {
     
          // Throw an exception rather than returning, because returning within a try{} block
          // causes a NonLocalReturnControl exception to be thrown. The NonLocalReturnControl
          // exception will be caught by the catch block, leading to an incorrect ExceptionFailure
          // for the task.
          throw new TaskKilledException(killReason.get)
        }

        // The purpose of updating the epoch here is to invalidate executor map output status cache
        // in case FetchFailures have occurred. In local mode `env.mapOutputTracker` will be
        // MapOutputTrackerMaster and its cache invalidation is not based on epoch numbers so
        // we don't need to make any special calls here.
        if (!isLocal) {
     
          logDebug("Task " + taskId + "'s epoch is " + task.epoch)
          env.mapOutputTracker.asInstanceOf[MapOutputTrackerWorker].updateEpoch(task.epoch)
        }

        // Run the actual task and measure its runtime.

        //调用Task的runTask方法,由于Task本身是一个抽象类,具体的runTask方法由他的
        //两个子类ShuffeleMapTask和ResultTask
        taskStartTime = System.currentTimeMillis()
        taskStartCpu = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
     
          threadMXBean.getCurrentThreadCpuTime
        } else 0L
        var threwException = true
        val value = Utils.tryWithSafeFinally {
     
          val res = task.run(
            taskAttemptId = taskId,
            attemptNumber = taskDescription.attemptNumber,
            metricsSystem = env.metricsSystem)
          threwException = false
          res
        }
        ...
    }

对于ShuffleTask来说,它的计算结果会写到BlockManager之中,最终返回给DAGScheduler的是一个MapStatus对象。代码实现如下:

 override def runTask(context: TaskContext): MapStatus = {
     
    // Deserialize the RDD using the broadcast variable.
    val threadMXBean = ManagementFactory.getThreadMXBean
    val deserializeStartTime = System.currentTimeMillis()
    val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
     
      threadMXBean.getCurrentThreadCpuTime
    } else 0L

    //反序列化获取RDD和RDD的依赖
    val ser = SparkEnv.get.closureSerializer.newInstance()
    val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
    _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
    _executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
     
      threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime
    } else 0L

    var writer: ShuffleWriter[Any, Any] = null
    try {
     

      val manager = SparkEnv.get.shuffleManager
      writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)

      //首先调用rdd.iterator,如果该RDD已经Cache或者Checkpoint,那么直接读取结果
      //否则计算,计算结果会保存在本地系统的BlockManager中
      writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])

      //关闭writer,返回计算结果,返回包含了数据的location和size等元数据信息的MapStatus信息
      writer.stop(success = true).get
    } catch {
     
      ...
  }

对于Result的runTask方法而言,它最终返回的是func函数的计算结果。

override def runTask(context: TaskContext): U = {
     
    // Deserialize the RDD and the func using the broadcast variables.
    val threadMXBean = ManagementFactory.getThreadMXBean

    //反序列化广播量得到RDD
    val deserializeStartTime = System.currentTimeMillis()
    val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
     
      threadMXBean.getCurrentThreadCpuTime
    } else 0L
    val ser = SparkEnv.get.closureSerializer.newInstance()
    val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
    _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
    _executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
     
      threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime
    } else 0L

    //ResultTask的runTask方法返回的是计算结果
    func(context, rdd.iterator(partition, context))
  }

执行结果

对于Executor的计算结果,会根据结果的大小有不同的策略。具体任务实现在TaskRunner的run方法后半部分实现,代码如下:

override def run(): Unit = {
     
    ...

      try {
     
      ...
        //执行任务
        val taskFinish = System.currentTimeMillis()
        val taskFinishCpu = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
     
          threadMXBean.getCurrentThreadCpuTime
        } else 0L

        // If the task has been killed, let's fail it.
        task.context.killTaskIfInterrupted()

        val resultSer = env.serializer.newInstance()
        val beforeSerialization = System.currentTimeMillis()

        //对生成的结果序列化,并把结果放到DirectTaskResult中
        val valueBytes = resultSer.serialize(value)
        val afterSerialization = System.currentTimeMillis()
		...

        // Note: accumulator updates must be collected after TaskMetrics is updated
        val accumUpdates = task.collectAccumulatorUpdates()
        // TODO: do not serialize value twice
        val directResult = new DirectTaskResult(valueBytes, accumUpdates)
        val serializedDirectResult = ser.serialize(directResult)
        val resultSize = serializedDirectResult.limit()

        // directSend = sending directly back to the driver
        val serializedResult: ByteBuffer = {
     

          //生成结果序列化结果大于最大值(默认为1GB)直接丢弃
          if (maxResultSize > 0 && resultSize > maxResultSize) {
     
            logWarning(s"Finished $taskName (TID $taskId). Result is larger than maxResultSize " +
              s"(${Utils.bytesToString(resultSize)} > ${Utils.bytesToString(maxResultSize)}), " +
              s"dropping it.")
            ser.serialize(new IndirectTaskResult[Any](TaskResultBlockId(taskId), resultSize))
          } else if (resultSize > maxDirectResultSize) {
     
            //生成结果序列化结果在[1GB,128M-200KB]之间,存放到BlockManager中
            //然后通过Netty发送给Driver终端点
            val blockId = TaskResultBlockId(taskId)
            env.blockManager.putBytes(
              blockId,
              new ChunkedByteBuffer(serializedDirectResult.duplicate()),
              StorageLevel.MEMORY_AND_DISK_SER)
            logInfo(
              s"Finished $taskName (TID $taskId). $resultSize bytes result sent via BlockManager)")
            ser.serialize(new IndirectTaskResult[Any](blockId, resultSize))
          } else {
     
            logInfo(s"Finished $taskName (TID $taskId). $resultSize bytes result sent to driver")

            //通过Netty直接发送给Driver终端点
            serializedDirectResult
          }
        }

        setTaskFinishedAndClearInterruptStatus()
        //向Driver终端点发送任务运行完毕消息
        execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult)

      } 
      ...
    }

任务执行完毕后,TaskRunner将任务的执行结果发送给DriverEndpoint终端点。该终端点会转给TaskShedulerImpl的statusUpdate方法进行处理,在该方法中对于不同的任务状态有不同的处理。
如果任务是ShuffleMapTask,那么它需要将结果通过某种机制烤熟下游的调度阶段,以便为后续调度阶段的输入,代码实现如下:

 case smt: ShuffleMapTask =>
            val shuffleStage = stage.asInstanceOf[ShuffleMapStage]
            shuffleStage.pendingPartitions -= task.partitionId
            val status = event.result.asInstanceOf[MapStatus]
            val execId = status.location.executorId
            logDebug("ShuffleMapTask finished on " + execId)
            if (failedEpoch.contains(execId) && smt.epoch <= failedEpoch(execId)) {
     
              logInfo(s"Ignoring possibly bogus $smt completion from executor $execId")
            } else {
     
              // The epoch of the task is acceptable (i.e., the task was launched after the most
              // recent failure we're aware of for the executor), so mark the task's output as
              // available.
              mapOutputTracker.registerMapOutput(
                shuffleStage.shuffleDep.shuffleId, smt.partitionId, status)
            }

如果任务是ResultTask,判断该作业是否完成,如果完成,则标记该作业已经完成,清除作业依赖的资源并发送消息给系统监听总线告知作业执行完毕。

 case rt: ResultTask[_, _] =>
            val resultStage = stage.asInstanceOf[ResultStage]
            resultStage.activeJob match {
     
              case Some(job) =>
                // Only update the accumulator once for each result task.

                //如果作业执行完毕, 标记该作业已经完成,清楚作业依赖的资源并发送消息给系统消息总线
                //告诉作业执行完毕
                if (!job.finished(rt.outputId)) {
     
                  updateAccumulators(event)
                }
              case None => // Ignore update if task's job has finished.
            }
          case _ =>
            updateAccumulators(event)
        }
      case _: ExceptionFailure | _: TaskKilled => updateAccumulators(event)
      case _ =>
    }
    postTaskEnd(event)

你可能感兴趣的:(Spark,spark,big,data,scala)