今天给大家分享一个数据可视化案例:如何获取全国不同城市火锅店数量情况,并将这些数据进行可视化展示,以更加直观的方式去浏览全国不同省份、不同城市的火锅店分布情况。
本文数据来自于某度地图,通过python技术知识去获取数据并进行可视化。
注:本文内容仅作为编程技术学习讨论,相关代码和数据不可用于商业用途,否则后果自负。
1
网页分析
首先先看一下数据源,在某度地图里面按照下方操作,就可以请求到全国的火锅店情况(从下图来看没有显示出来,但是通过浏览器工具的Network功能,可以看到数据。具体操作可参考:爬虫必备工具,掌握它就解决了一半的问题)
再network中,找到下面这个数据包
打开之后可以看到json数据
2
获取数据
对网页分析好之后,接下来可以借助Python技术进行获取数据,并保存到excel中。
import json
import requests
import openpyxl
下面开始编写请求数据代码(请求时记得带上headers)
###请求头
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36",
'Referer':'https://map.baidu.com/@12949550.923158279,3712445.9716704674,6.28z',
"Cookie":";"你的cookie",
}
##请求链接
url = "https://map.baidu.com/?newmap=1&reqflag=pcmap&biz=1&from=webmap&da_par=direct&pcevaname=pc4.1&qt=s&da_src=searchBox.button&wd=%E7%81%AB%E9%94%85%E5%BA%97&c=1&src=0&wd2=&pn=0&sug=0&l=6&b=(10637065.476146251,2368134.592189369;12772445.910805061,5056757.351151566)&from=webmap&biz_forward={%22scaler%22:1,%22styles%22:%22pl%22}&sug_forward=&auth=NTSwAZUMzIaTTdWD4WAv0731cWF3MQEauxLxREHzERRtykiOxAXXw1GgvPUDZYOYIZuVt1cv3uVtGccZcuVtPWv3GuztQZ3wWvUvhgMZSguxzBEHLNRTVtcEWe1GD8zv7ucvY1SGpuxVthgW1aDeuxtf0wd0vyMySFIAFM7ueh33uTtAffbDF&seckey=c6d9c7e05d7e627c56ed46fab5d7c5c792064779599d5e12b955a6f18a1204375d1588206c94d22e4bdd1ade0ad06e78c21917e24c6223b96bc51b75ca38651a1b203a0609f126163c5e82fd0549a068e537303424837ab798acfc9088e5d76a66451c20ebd9599b41c9b4f1371850d20fa442ad464712f54c912422f4fa20b3052f8bb810f30d41c7c0e55af68f9d9d973537f03d0aa0a1d1617d78cae29b49c64c2d2dc3f44cf0f8799234b124a7a2dec18bfa011e097e31a508eae37b8603f97df8f935f04b3652f190eac52d04816f302a582c53971e515ff2e0e2b4cc30446e0bee48d51c4be8b6fe4185589ed9&device_ratio=1&tn=B_NORMAL_MAP&nn=0&u_loc=12677548,2604239&ie=utf-8&t=1618452491622"
###响应数据
response = requests.get(url,headers=headers).json()
这里的cookie可以在浏览器network中复制即可。
通过返回的json数据可知道,我们的目标数据在more_city中,里面是列表数据是省份(provice是省份名称,num是火锅店数量),紧接着每一个省份里都有city(列表),里面是对应着省份的城市(name是城市名称,num是对应城市火锅店数量)
response = response['more_city']
for i in response:
city = i['city']
print(i['province'])
print(i['num'])
for j in city:
print(j['name'])
print(j['num'])
省份和城市分别保存到两个不同的excel中
outwb_p = openpyxl.Workbook()
outws_p = outwb_p.create_sheet(index=0)
outws_p.cell(row=1, column=1, value="省份")
outws_p.cell(row=1, column=2, value="数量")
outwb_c = openpyxl.Workbook()
outws_c = outwb_c.create_sheet(index=0)
outws_c.cell(row=1, column=1, value="城市")
outws_c.cell(row=1, column=2, value="数量")
##################
###在循环中写入数据
##################
### 保存全国省份火锅数量-李运辰”
outwb_p.save("全国省份火锅数量-李运辰.xls") # 保存
### 保存全国城市火锅数量-李运辰”
outwb_c.save("全国城市火锅数量-李运辰.xls") # 保存
3
数据可视化
datafile = u'全国省份火锅数量-李运辰.xls'
data = pd.read_excel(datafile)
attr = data['省份'].tolist()
value = data['数量'].tolist()
name = []
for i in attr:
if "省" in i:
name.append(i.replace("省",""))
else:
name.append(i)
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker
c = (
Map()
.add("数量", [list(z) for z in zip(name, value)], "china")
.set_global_opts(title_opts=opts.TitleOpts(title="全国火锅店数量分布情况"))
.render("全国火锅店数量分布情况.html")
)
还可以这样画
datafile = u'全国省份火锅数量-李运辰.xls'
df = pd.read_excel(datafile)
province_distribution = df[['省份', '数量']].values.tolist()
geo = Geo()
geo.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
geo.add_schema(maptype="china")
geo.set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=110000))
# 加入数据
geo.add('全国火锅店数量分布情况图2', province_distribution, type_=ChartType.EFFECT_SCATTER)
geo.render("全国火锅店数量分布情况图2.html")
为了绘制城市的分布图,选择了四川省为例进行绘制(如果要绘制全国的所有城市,那样出来的图密密麻麻,不美观)
datafile = u'全国城市火锅数量-李运辰.xls'
data = pd.read_excel(datafile)
city = data['城市'].tolist()
values2 = data['数量'].tolist()
###四川
name = []
value = []
flag = 0
for i in range(0,len(city)):
if city[i] =="绵阳市":
flag = 1
if flag:
name.append(city[i])
value.append(int(values2[i]))
if city[i] =="甘孜藏族自治州":
name.append(city[i])
value.append(int(values2[i]))
break
c = (
Map()
.add("四川火锅店数量分布", [list(z) for z in zip(name, value)], "四川")
.set_global_opts(
title_opts=opts.TitleOpts(title="四川火锅店数量分布"), visualmap_opts=opts.VisualMapOpts()
)
.render("四川火锅店数量分布.html")
)
4
小结
以上就是一个简单的爬虫+可视化案例。
如果文章对你有帮助,欢迎转发/点赞/收藏~
获取文中相关代码及数据,请在公众号后台回复关键字 小助手,找他领取暗号火锅
推荐阅读:
入门: 最全的零基础学Python的问题 | 零基础学了8个月的Python | 实战项目 |学Python就是这条捷径
干货:爬取豆瓣短评,电影《后来的我们》 | 38年NBA最佳球员分析 | 从万众期待到口碑扑街!唐探3令人失望 | 笑看新倚天屠龙记 | 灯谜答题王 |用Python做个海量小姐姐素描图 |碟中谍这么火,我用机器学习做个迷你推荐系统电影
趣味:弹球游戏 | 九宫格 | 漂亮的花 | 两百行Python《天天酷跑》游戏!
AI: 会做诗的机器人 | 给图片上色 | 预测收入 | 碟中谍这么火,我用机器学习做个迷你推荐系统电影
小工具: Pdf转Word,轻松搞定表格和水印! | 一键把html网页保存为pdf!| 再见PDF提取收费! | 用90行代码打造最强PDF转换器,word、PPT、excel、markdown、html一键转换 | 制作一款钉钉低价机票提示器! |60行代码做了一个语音壁纸切换器天天看小姐姐!|
年度爆款文案
1).卧槽!Pdf转Word用Python轻松搞定!
2).学Python真香!我用100行代码做了个网站,帮人PS旅行图片,赚个鸡腿吃
3).首播过亿,火爆全网,我分析了《乘风破浪的姐姐》,发现了这些秘密
4).80行代码!用Python做一个哆来A梦分身
5).你必须掌握的20个python代码,短小精悍,用处无穷
6).30个Python奇淫技巧集
7).我总结的80页《菜鸟学Python精选干货.pdf》,都是干货
8).再见Python!我要学Go了!2500字深度分析!
9).发现一个舔狗福利!这个Python爬虫神器太爽了,自动下载妹子图片