python概率密度函数_python实现beta分布概率密度函数的方法

如下所示:

beta分布的最大特点是其多样性, 从下图可以看出, beta分布具有各种形态, 有U形, 类似正态分布的形状, 类似uniform分布的形状等, 正式这一特质使beta分布在共轭先验的计算中起到重要作用:

import matplotlib.pyplot as plt

import numpy as np

from scipy import stats

from matplotlib import style

style.use('ggplot')

params = [0.5, 1, 2, 3]

x = np.linspace(0, 1, 100)

f, ax = plt.subplots(len(params), len(params), sharex=True, sharey=True)

for i in range(4):

for j in range(4):

alpha = params[i]

beta = params[j]

pdf = stats.beta(alpha, beta).pdf(x)

ax[i, j].plot(x, pdf)

ax[i, j].plot(0, 0, label='alpha={:3.2f}\nbeta={:3.2f}'.format(alpha, beta), alpha=0)

plt.setp(ax[i, j], xticks=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0], yticks=[0,2,4,6,8,10])

ax[i, j].legend(fontsize=10)

ax[3, 0].set_xlabel('theta', fontsize=16)

ax[0, 0].set_ylabel('pdf(theta)', fontsize=16)

plt.suptitle('Beta PDF', fontsize=16)

plt.tight_layout()

plt.show()

以上这篇python实现beta分布概率密度函数的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

你可能感兴趣的:(python概率密度函数)