初识Pytorch使用transforms的代码

首先,这次讲解的tansforms功能,通俗地讲,类似于在计算机视觉流程里的图像预处理部分的数据增强。

transforms的原理:
说明:图片(输入)通过工具得到结果(输出),这个工具,就是transforms模板工具,(tool=transforms.ToTensor()具体工具),使用工具result=tool(图片)

初识Pytorch使用transforms的代码_第1张图片

  • tansforms的调用与使用,由下图可得: 先创建一个transforms.Tensor(),使用from torchvision import transforms调包
  • transforms去调init函数
  • init去调用真正的transforms类,里面就有很多的方法(绿色五角星标注),例如:resize,ToTensor,CenterCrop(从这些方法可以看出,许多都是数据增强的方法)。

初识Pytorch使用transforms的代码_第2张图片

3. 接下来,上代码:

import os
from torchvision import transforms
from PIL import Image

root_path = "D:\\data\\basic\\Image"
label_path = "aligned"

# 1.获取aligned第一张图的名字
img_dir = os.path.join(root_path, label_path)
img_list = os.listdir(img_dir)
img_path = img_list[0]

# 2.获取aligned第一张图的路径
img = os.path.join(root_path, label_path, img_path)

# 3.使用python自带的PIL获取图片
img = Image.open(img)

# 4.将PIL利用transforms转换成ToTensor
to_tensor = transforms.ToTensor()  # 创建totensor ()
img = to_tensor(img)  # 使用to_tensor直接将图片的PIL转化为tensor

print(img)
# transforms

代码结果:

初识Pytorch使用transforms的代码_第3张图片

到此这篇关于初识Pytorch使用transforms的文章就介绍到这了,更多相关Pytorch使用transforms内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

你可能感兴趣的:(初识Pytorch使用transforms的代码)