天题系列: LRU Cache

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

完全懵了的,题意不是很明白(esp. invalidate the least recently used item),不过听说是经典,学习一下

 

ref http://www.cnblogs.com/springfor/p/3869393.html

 

以下题解完全来自ref 爱做饭同学的“

题解:

这道题是一个数据结构设计题,在leetcode里面就这么一道,还是挺经典的一道题,可以好好看看。

这道题要求设计实现LRU cache的数据结构,实现set和get功能。学习过操作系统的都应该知道,cache作为缓存可以帮助快速存取数据,但是确定是容量较小。这道题要求实现的cache类型是LRU,LRU的基本思想就是“最近用到的数据被重用的概率比较早用到的大的多”,是一种更加高效的cache类型。

解决这道题的方法是:双向链表+HashMap

“为了能够快速删除最久没有访问的数据项和插入最新的数据项,我们将双向链表连接Cache中的数据项,并且保证链表维持数据项从最近访问到最旧访问的顺序。 每次数据项被查询到时,都将此数据项移动到链表头部(O(1)的时间复杂度)。这样,在进行过多次查找操作后,最近被使用过的内容就向链表的头移动,而没 有被使用的内容就向链表的后面移动。当需要替换时,链表最后的位置就是最近最少被使用的数据项,我们只需要将最新的数据项放在链表头部,当Cache满 时,淘汰链表最后的位置就是了。 ”

 “注: 对于双向链表的使用,基于两个考虑。

            首先是Cache中块的命中可能是随机的,和Load进来的顺序无关。

         其次,双向链表插入、删除很快,可以灵活的调整相互间的次序,时间复杂度为O(1)。”

解决了LRU的特性,现在考虑下算法的时间复杂度。为了能减少整个数据结构的时间复杂度,就要减少查找的时间复杂度,所以这里利用HashMap来做,这样时间苏咋读就是O(1)。

 所以对于本题来说:

get(key): 如果cache中不存在要get的值,返回-1;如果cache中存在要找的值,返回其值并将其在原链表中删除,然后将其作为头结点。

set(key,value):当要set的key值已经存在,就更新其value, 将其在原链表中删除,然后将其作为头结点;当药set的key值不存在,就新建一个node,如果当前len<capacity,就将其加入hashmap中,并将其作为头结点,更新len长度,否则,删除链表最后一个node,再将其放入hashmap并作为头结点,但len不更新。

 

原则就是:对链表有访问,就要更新链表顺序。 

public class LRUCache {

    private DoubleLinkedListNode head;

    private DoubleLinkedListNode end;

    private HashMap<Integer, DoubleLinkedListNode>  map = new HashMap<Integer, DoubleLinkedListNode>();

    private int len, cap;

    

    public LRUCache(int capacity) {

        this.cap = capacity;

        len = 0;

    }

    

    public int get(int key) {

        if(map.containsKey(key)){

            DoubleLinkedListNode node = map.get(key);

            removeNode(node);

            setHead(node);

            return node.val;

        }else

            return -1;

    }

    

    public void removeNode(DoubleLinkedListNode node){

        DoubleLinkedListNode cur = node;

        DoubleLinkedListNode pre = cur.pre;

        DoubleLinkedListNode post = cur.next;

        if(pre!=null){

            pre.next = post;

        }else{

            head = post;

        }

        if(post!=null){

            post.pre = pre;

        }else

            end = pre;

    }

    

    public void setHead(DoubleLinkedListNode node){

        node.next = head;

        node.pre = null;

        if(head!=null){

            head.pre = node;

        }

        head = node;

        if(end==null){

            end = node;

        }

    }

            

    public void set(int key, int value) {

        if(map.containsKey(key)){

            DoubleLinkedListNode old = map.get(key);

            old.val = value;

            removeNode(old);

            setHead(old);

        }else{

            DoubleLinkedListNode newNode =new DoubleLinkedListNode(key,value);

            if(len<cap){

                len++;

                setHead(newNode);

                map.put(key, newNode);

            }else{

                map.remove(end.key);

                end = end.pre;

                if(end!=null){

                    end.next=null;

                }

                setHead(newNode);

                map.put(key,newNode);

            }

        }

    }

}



class DoubleLinkedListNode {

    public int key;

    public int val;

    public DoubleLinkedListNode pre;

    public DoubleLinkedListNode next;

    public DoubleLinkedListNode(int key, int value){

        val = value;

        this.key = key;

    }

}

 

你可能感兴趣的:(cache)