- 深度学习模型压缩:非结构化剪枝与结构化剪枝的定义与对比
从零开始学习人工智能
深度学习剪枝人工智能
****在深度学习中,模型压缩是优化模型性能、降低存储和计算成本的重要技术之一。其中,剪枝(Pruning)是最常用的方法之一。根据剪枝的粒度和目标,剪枝可以分为非结构化剪枝(UnstructuredPruning)和结构化剪枝(StructuredPruning)。本文将详细介绍这两种剪枝方法的定义,并通过对比帮助读者更好地理解它们的差异。1.非结构化剪枝(UnstructuredPruning
- 白话设计模式之(95):状态模式——优化代码状态管理的利器
一杯年华@编程空间
白话设计模式设计模式状态模式ui
白话设计模式之(95):状态模式——优化代码状态管理的利器大家好!在软件开发的学习过程中,我们都在不断探索如何让代码更加高效、灵活且易于维护。设计模式作为编程领域的重要工具,为我们解决各种复杂问题提供了有效的方案。今天,咱们深入探讨状态模式,它是一种优化代码状态管理的利器,能帮助我们处理对象在不同状态下的复杂行为。希望通过这篇博客,能和大家一起全面掌握状态模式,从基础概念到实际应用,深入理解其原理
- Linux内核--进程管理(十一)多核下的负载均衡
文艺小少年
CPU性能分析与操作系统的构建linux负载均衡运维
目录一、引言二、调度机制介绍------>2.1、线程的多核运行------>2.2、RT进程多核负载均衡------>2.3、普通进程多核负载均衡------>2.4、设置CPUtaskaffinity三、中断负载均衡、RPS软中断负载均衡四、linux非实时系统------>4.1、优化措施一、引言本文延续前一章的内容,介绍调度器的其他内容:关于多核、分群、硬实时二、多核下的负载均衡tips:
- 在数字化时代重构人际关系:探索真实连接的创新方式
AI天才研究院
计算ChatGPTDeepSeekRL强化学习agentagi推理模型智能驾驶javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学程序员实现财富自由
在数字化时代重构人际关系:探索真实连接的创新方式关键词数字化时代、人际关系、真实连接、创新方式、社交算法、用户体验、跨界合作摘要随着数字化时代的到来,人际关系面临着前所未有的挑战。传统的面对面交流被虚拟互动所取代,人们之间的真实连接日益减弱。本文旨在探讨在数字化时代重构人际关系的创新方式,通过分析数字化工具对人际关系的影响,探索真实连接的要素及其在数字化环境下的实现路径。文章从核心概念、创新方法、
- (每日一题) 力扣 2418. 按身高排序
誓约酱
每日一题leetcodejava算法c++运维linuxc语言
文章目录LeetCode2418.按身高排序|双解法对比与下标排序的精妙设计问题描述解法思路分析方法一:Pair打包法(直接排序)方法二:下标排序法(当前实现)关键代码解析索引初始化优化自定义排序规则结果重构复杂度对比表性能实测数据扩展应用多条件排序实现总结LeetCode2418.按身高排序|双解法对比与下标排序的精妙设计问题描述给定两个等长数组names(姓名数组)和heights(身高数组)
- 算法题解——请根据二叉树的前序遍历,中序遍历恢复二叉树,并打印出二叉树的右视图
就叫乾龙呀丶
牛客网算法题题解二叉树算法
请根据二叉树的前序遍历,中序遍历恢复二叉树,并打印出二叉树的右视图题目描述如下:请根据二叉树的前序遍历,中序遍历恢复二叉树,并打印出二叉树的右视图输入:[1,2,4,5,3],[4,2,5,1,3]返回值:[1,3,5]本题目可以分为两个部分重构二叉树打印二叉树的右视图1、重构二叉树思路对于先序遍历而言,[1,2,4,5,3],列表中的1必定是二叉树的根节点,而中序遍历是左子树、根节点、右子树的顺
- 编程提示工程高级技巧:从入门到精通
SuperMale-zxq
AI编程——程序员的进阶之路javapythonc++AI编程人工智能
编程提示工程高级技巧:从入门到精通开篇:当代码与语言的边界变得模糊想象这样一个场景:一位开发者坐在电脑前,面对一个复杂的数据处理任务。传统做法是打开IDE,花几小时编写、调试和优化代码。但今天,他只是打开了AI编程助手,输入了这样一段文字:“创建一个Python函数,读取CSV文件中的销售数据,按季度汇总,并生成一个显示趋势的可交互图表。数据包含日期、产品ID、销售额和区域字段。”几秒钟后,屏幕上
- 市场波动中的风险管理与策略优化
Q3990385023
区块链
市场波动中的风险管理与策略优化在市场交易中,价格的波动性为投资者提供了交易机会,但同时也带来了风险。如何在市场不确定性中进行有效的风险管理,并优化交易策略,是每位交易者都需要思考的问题。本文将探讨市场波动的影响因素、如何通过合理的资金管理降低风险,以及如何利用数据分析提升交易稳定性。一、市场波动的核心影响因素1.供需关系变化市场价格的波动主要受到供需关系的影响。无论是受宏观经济政策影响,还是市场预
- RAG数据嵌入和重排序:如何选择合适的模型
从零开始学习人工智能
深度学习
RAG数据嵌入和重排序:如何选择合适的模型在自然语言处理(NLP)领域,Retrieval-AugmentedGeneration(RAG)模型已经成为一种强大的工具,用于结合检索和生成能力来处理复杂的语言任务。RAG模型的核心在于两个关键步骤:数据嵌入(Embedding)和重排序(Re-ranking)。这两个步骤的选择和优化对于模型的性能至关重要。本文将探讨如何选择合适的模型来实现高效的数据
- 如何优化公司需求管理
需求管理
管理需求变更的关键在于明确流程、跨部门协同、数据驱动反馈。其中,明确流程要求在项目初期建立一套标准化的变更管理制度;跨部门协同确保各部门对需求变更有统一理解并共同参与决策;数据驱动反馈通过实时数据和用户反馈不断优化变更策略,从而保证产品始终紧跟市场需求。一、需求变更管理的重要性与基本理念需求变更管理是软件开发和产品创新过程中必不可少的组成部分。需求在项目启动时往往是初步、模糊且充满不确定性的,而随
- 如何优化公司需求管理
需求管理
管理需求变更的关键在于明确流程、跨部门协同、数据驱动反馈。其中,明确流程要求在项目初期建立一套标准化的变更管理制度;跨部门协同确保各部门对需求变更有统一理解并共同参与决策;数据驱动反馈通过实时数据和用户反馈不断优化变更策略,从而保证产品始终紧跟市场需求。一、需求变更管理的重要性与基本理念需求变更管理是软件开发和产品创新过程中必不可少的组成部分。需求在项目启动时往往是初步、模糊且充满不确定性的,而随
- SvelteKit 最新中文文档教程(4)—— 表单 actions
前言Svelte,一个语法简洁、入门容易,面向未来的前端框架。从Svelte诞生之初,就备受开发者的喜爱,根据统计,从2019年到2024年,连续6年一直是开发者最感兴趣的前端框架No.1:Svelte以其独特的编译时优化机制著称,具有轻量级、高性能、易上手等特性,非常适合构建轻量级Web项目。为了帮助大家学习Svelte,我同时搭建了Svelte最新的中文文档站点。如果需要进阶学习,也可以入手我
- HarmonyOS NEXT ArkTS布局优化与性能提升指南
架构教育
在ArkTS应用开发中,布局优化和性能提升是确保应用流畅运行的关键。本文将从避免二次布局、优先使用layoutWeight、响应式布局设计、懒加载、优化大型对象更新以及内存管理六个方面,探讨如何优化布局和提升性能。避免不必要的二次布局二次布局通常发生在子元素尺寸或位置发生变化时,导致父容器需要重新计算布局。以下是常见的二次布局场景及优化方法:场景1:动态改变子元素尺寸当子元素的尺寸动态变化时(如字
- 优化深度学习模型:PyTorch中的模型剪枝技术详解
代码之光_1980
深度学习pytorch剪枝
标题:优化深度学习模型:PyTorch中的模型剪枝技术详解在深度学习领域,模型剪枝是一种提高模型效率和性能的技术。通过剪枝,我们可以去除模型中的冗余权重,从而减少模型的复杂度和提高运算速度,同时保持或甚至提升模型的准确率。本文将详细介绍如何在PyTorch框架中实现模型剪枝,并提供相应的代码示例。1.模型剪枝的基本概念模型剪枝主要分为两种类型:结构化剪枝和非结构化剪枝。结构化剪枝通常指的是剪除整个
- 群体智能优化算法-GOOSE优化算法(含Matlab源代码)
HR Zhou
算法matlab开发语言群体智能优化优化
摘要GOOSE(GooseOptimizationAlgorithm)是一种基于大雁(Goose)在自然界中觅食与捕猎行为所启发的元启发式算法。它借助大雁的飞行速度、加速度、随机跳跃等策略,以实现对搜索空间进行全局探索和局部开发。通过设置自由落体速度(FreeFallSpeed)、声音传播距离(SoundDistance)与时间平均(TimeAverage)等多种机制,GOOSE在处理复杂的高维非
- LeetCode 3280 将日期转换为二进制表示
雾月55
leetcode算法职场和发展数据结构java
【算法实战】日期转二进制:两种解法的思路与优化(附代码解析)一、问题描述给定一个yyyy-mm-dd格式的日期字符串,要求将年、月、日分别转为无前导零的二进制,并保持year-month-day格式。示例:输入2025-03-15,输出11111101001-11-1111(2025→11111101001,3→11,15→1111)。二、解法一:直接分割转换(新手友好)思路分析分割日期:按-拆分
- 群体智能优化算法-澳洲野狗优化算法(含Matlab源代码)
HR Zhou
算法matlab开发语言群体智能优化优化
DingoOptimizationAlgorithm(DOA)sourcecodeDevelopedinMATLAB9.4.0.813654(R2018a)Author:Dr.HernanPeraza-VazquezMTA.GustavoEchavarria-Castilloe-mail:
[email protected]@alumno.ipn.mxProgrammer:
- 群体智能优化算法-旗鱼优化算法 (Sailfish Optimizer, SFO,含Matlab源代码)
HR Zhou
算法matlab开发语言群体智能优化优化
摘要旗鱼优化算法(SailfishOptimizer,SFO)是一种模拟旗鱼(Sailfish)和沙丁鱼(Sardine)之间捕食关系的新型元启发式算法。通过在搜索过程中模拟旗鱼对沙丁鱼的捕食行为,以及沙丁鱼群的逃逸与防御机制,SFO平衡了全局探索与局部开发,在处理复杂优化问题时具有良好的收敛性能。本文提供了SFO的核心思路并提供了完整MATLAB代码及详细中文注释,以帮助读者快速理解并应用该算法
- C#原型模式:通过克隆对象来优化创建过程
江沉晚呤时
设计模式java开发语言.netcoremicrosoftasp.netc#
在软件开发中,创建对象是非常常见的操作。然而,在某些情况下,构造对象的过程可能非常复杂或耗时,特别是当对象的创建涉及多个步骤或者需要初始化大量数据时。为了解决这个问题,**原型模式(PrototypePattern)**应运而生。它允许通过复制一个已有的对象来创建新的对象,从而避免了重复的创建成本和复杂的初始化过程。什么是原型模式?原型模式是一种创建型设计模式,它通过克隆一个现有的对象来生成新对象
- 【技术解密】本地部署 DeepSeek-V3:完整指南
海棠AI实验室
“智元启示录“-AI发展的深度思考与未来展望人工智能深度学习DeepSeek
目录引言运行环境需求下载与安装推理部署总结参考资源引言随着人工智能的快速发展,开源大模型正逐步改变着技术生态。DeepSeek-V3作为最新的开源大模型之一,不仅提供了强大的推理能力,同时也支持本地部署,使开发者可以灵活地进行自定义优化。本文将详细介绍如何在本地部署DeepSeek-V3,涵盖系统要求、安装步骤、模型转换及不同推理框架的应用。1.运行环境需求1.1硬件要求✅NVIDIAGPU(支持
- 推荐文章:GPU 基于顶点着色器的高效动画系统 for Unity.Entities
劳治亮
推荐文章:GPU基于顶点着色器的高效动画系统forUnity.Entities去发现同类优质开源项目:https://gitcode.com/1、项目介绍该项目是一个专为Unity.Entities设计的轻量级但极快的GPU顶点着色器动画系统。灵感源自Nordeus和Unity的合作,经过优化和调整,以适应最新的实体系统。它特别适用于需要大量角色各自独特动画的情况,且动画状态处理极其简单。2、项目
- 【DeepSeek应用】本地部署deepseek模型后,如何在vscode中调用该模型进行代码撰写,检视和优化?
AndrewHZ
深度学习新浪潮AI算法工程师面试指北vscode人工智能深度学习DeepSeek算法语言模型编辑器
若已成功在本地部署了DeepSeek模型(例如通过vscode-llm、ollama或私有API服务),在VSCode中调用本地模型进行代码撰写、检视和优化的完整流程如下:1.准备工作:确认本地模型服务状态模型服务类型:若使用HTTPAPI服务(如FastAPI/Flask封装),假设服务地址为http://localhost:8000。若使用ollama部署,模型名称为deepseek,调用命令
- 基于Gradio实现的增删改查(CRUD)模板系统设计方案
大霸王龙
pythongradio
基于Gradio实现的增删改查(CRUD)模板系统设计方案,结合了交互界面优化与数据持久化方案,支持本地JSON存储和动态界面更新:一、系统架构设计数据存储层采用JSON文件实现数据持久化(data.json)数据结构示例:{"items":[{"id":1,"name":"示例项目","category":"测试","status":"进行中"}]}界面交互层使用gr.Blocks实现多组件布局
- pytorch 天花板级别的知识点 你可以不会用 但是不能不知道
小赖同学啊
人工智能pytorch人工智能python
PyTorch的高级知识涵盖了从模型优化到分布式训练的广泛内容,适合已经掌握基础知识的开发者进一步提升技能。以下是PyTorch的高级知识点,详细且全面:1.模型优化与加速1.1混合精度训练定义:使用半精度(FP16)和单精度(FP32)混合训练,减少内存占用并加速计算。实现:使用torch.cuda.amp模块。示例:fromtorch.cuda.ampimportautocast,GradSc
- 【GPT入门】第24课 langfuse介绍
*星星之火*
大模型gpt
【GPT入门】第24课langfuse介绍1.langfuse概念与作用2.代码3.页面效果4.设计模式1.装饰器模式2.上下文管理模式1.langfuse概念与作用Langfuse是一款专为大规模语言模型(LLM)应用开发设计的开源平台。其作用主要包括以下几个方面:提升开发效率:通过消除LLM应用构建与运维的复杂性,让开发者、运维团队及产品经理能更专注于核心开发与迭代优化,减少在监控与优化方面的
- 大模型RAG实战|混合检索:BM25检索+向量检索的LlamaIndex实现
AIGC大模型 吱屋猪
djangopython后端AI-native人工智能llama百度
ThinkRAG大模型RAG实战系列文章,带你深入探索使用LlamaIndex框架,构建本地大模型知识库问答系统。本系列涵盖知识库管理、检索优化、模型本地部署等主题,通过代码与实例,讲解如何打造生产级系统,实现本地知识库的快速检索与智能问答。本文我将介绍一种效果更好的混合检索方法,在实际问答场景中,优于向量数据库自带的混合检索功能。1什么是混合检索目前,大模型RAG系统中普遍采用混合检索来提升检索
- AI如何创作音乐及其案例
alankuo
人工智能
AI创作音乐主要有以下几种方式:基于深度学习的生成模型深度神经网络:通过大量的音乐数据训练,让AI学习音乐的结构、旋律、和声、节奏等特征。如Transformer架构,其注意力机制可捕捉跨小节的旋律关联性,能生成具有长期依赖性的音乐序列。生成对抗网络(GAN):包含生成器和判别器,生成器负责生成音乐样本,判别器判断生成的音乐是否真实。两者相互对抗、不断优化,使生成器生成更逼真的音乐。变分自编码器(
- 【sklearn 07】sklearn工艺流程
@金色海岸
人工智能sklearnpython机器学习
01数据的获取02数据预处理03特征的提取04特征的选择05模型的训练06模型的评估07模型的优化
- 第二十五篇 SQL优化杀手锏:用分析函数让你的查询快如闪电
随缘而动,随遇而安
SQL之道——从入门到精通数据库sql
目录一、初识分析函数:外卖骑手的一天1.1真实工作场景二、分析函数三板斧(超直观对比表)三、手把手教学:5大核心函数详解️3.1排名三剑客(班级成绩单案例)3.1.1ROW_NUMBER():唯一学号式排名3.1.2RANK():运动会颁奖式排名3.1.3DENSE_RANK():电梯楼层式排名3.2时间旅行函数(股票分析案例)3.3滑动窗口函数(疫情数据分析)四、性能优化三大绝招(让老板眼前一亮
- 第十六篇 SQL优化之计划控制:进阶之路带上这篇文章,快到起飞
随缘而动,随遇而安
SQL之道——从入门到精通数据库sql
目录一、执行计划是啥?为啥要控制它?1.1执行计划就像导航路线1.2不管控执行计划的后果二、操控执行计划的「三板斧」2.1第一招:HINT大法(直接下指令)2.2第二招:暗度陈仓(间接引导)方法1:统计信息大法方法2:虚拟列黑科技方法3:分区表妙用2.3第三招:计划冻结术(一劳永逸)SQLProfilevsBaseline对比表三、实战演练:从青铜到王者案例:分页查询优化(5秒→0.1秒)四、课后
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb