String painter
Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2068 Accepted Submission(s): 908
Problem Description
There are two strings A and B with equal length. Both strings are made up of lower case letters. Now you have a powerful string painter. With the help of the painter, you can change a segment of characters of a string to any other character you want. That is, after using the painter, the segment is made up of only one kind of character. Now your task is to change A to B using string painter. What’s the minimum number of operations?
Input
Input contains multiple cases. Each case consists of two lines:
The first line contains string A.
The second line contains string B.
The length of both strings will not be greater than 100.
Output
A single line contains one integer representing the answer.
Sample Input
zzzzzfzzzzz abcdefedcba abababababab cdcdcdcdcdcd
Sample Output
Source
Recommend
lcy
题目描述 : 给定一个初始串,目标串,每步可以通过改变一个连续的子串使其变为同一个字母,至少需要多少步?
我们发现一段序列,每一步的选择是可以改变任意长度的连续子串,
那么通过枚举改变哪些连续子串,可以包含所有的情况。
d[i]表示以i结尾的序列变成目标串需要的最少步骤。d[i]=min(d[i],d[k]+dp[k+1][i]),因为是[k+1,i]区间是连续改变的,
那么我们可以将dp[k+1][i]看成是表示[k+1,i]区间内一个相同串到目标串的最少步骤.初始化dp[i][i]=1;
dp[i][j]=dp[i][j-1]+1;
if(a[i]==a[k]) //有相同的连续改变才会有作用,不同,无论通过何种方式.每一个都需要改变,改变次数都一样
//相同的话,通过连续改变,可以减少改变次数,
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][i-1]);
初始化d数组为0,d[i]=dp[0][1];
d[i]=min(d[i],d[k]+dp[k+1][i-1]);
通过枚举改变的连续子串的长度
动态规划: 定义状态,每一步的选择,包含了所有的可能性
最优子结构无后效性,如果状态设计不合理,会导致有后效性。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
char a[105],b[105];
int dp[105][105],d[105];
int Length;
void init()
{
memset(dp,0,sizeof(dp));
memset(d,0,sizeof(d));
for(int i=0;i<Length;i++)
dp[i][i]=1;
}
void solve()
{
/* for(int i=0;i<Length;i++)
for(int j=0;j<Length;j++)
for(int k=i;k<=j;k++)
{
dp[i][j]=min(DP(dp[i][k]+dp[k+1][j]),dp[i][j]);
}
for(int s=0;s<Length;s++)
{
for(int j=0;j<Length;j++)
printf("%d ",dp[s][j]);
printf("\n");
}
printf("2\n");
printf("%d\n",dp[0][Length-1]);
*/
for(int t=1;t<Length;t++)
for(int i=0;i<Length;i++)
{
int j=i+t;
if(j>=Length)
break;
dp[i][j]=dp[i][j-1]+1;
for(int k=i;k<j;k++)
{
if(b[k]==b[j])
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j-1]);
}
}
for(int i=0;i<Length;i++)
d[i]=dp[0][i];
for(int i=0;i<Length;i++)
{
if(a[i]==b[i])
d[i]=d[i-1];
else
{
for(int k=0;k<i;k++)
d[i]=min(d[i],d[k]+dp[k+1][i]);
}
}
}
int main()
{
//freopen("test.txt","r",stdin);
while(~scanf("%s%s",a,b))
{
Length=strlen(a);
init();
solve();
printf("%d\n",d[Length-1]);
}
return 0;
}