vlfeat-sift+python+mac

vlfeat主页:http://www.vlfeat.org/

使用方法:command line 使用方法

from:http://www.vlfeat.org/install-shell.html

1.下载vlfeat二进制包解压

2.在.bash_profile添加./vlfeat/bin/macui64/sift路径 详见链接

3.因为我用的virtualenv 添加path一直有问题 不生成***.sift文件 后来直接在def process_image cmmd中用的绝对路径

vlfeat-sift代码:

from:http://www.maths.lth.se/matematiklth/personal/solem/downloads/vlfeat.py

效果:我把ratio改小了一些


vlfeat-sift+python+mac_第1张图片

from PIL import Image

import os

from numpy import *

from pylab import *

def process_image(imagename,resultname,params="--edge-thresh 10 --peak-thresh 5"):

""" process an image and save the results in a file"""

if imagename[-3:] != 'pgm':

#create a pgm file

im = Image.open(imagename).convert('L')

im.save('tmp.pgm')

imagename = 'tmp.pgm'

cmmd = str("sift "+imagename+" --output="+resultname+

" "+params)

os.system(cmmd)

print 'processed', imagename, 'to', resultname

def read_features_from_file(filename):

""" read feature properties and return in matrix form"""

f = loadtxt(filename)

return f[:,:4],f[:,4:] # feature locations, descriptors

def write_features_to_file(filename,locs,desc):

""" save feature location and descriptor to file"""

savetxt(filename,hstack((locs,desc)))

def plot_features(im,locs,circle=False):

""" show image with features. input: im (image as array),

locs (row, col, scale, orientation of each feature) """

def draw_circle(c,r):

t = arange(0,1.01,.01)*2*pi

x = r*cos(t) + c[0]

y = r*sin(t) + c[1]

plot(x,y,'b',linewidth=2)

imshow(im)

if circle:

[draw_circle([p[0],p[1]],p[2]) for p in locs]

else:

plot(locs[:,0],locs[:,1],'ob')

axis('off')

def match(desc1,desc2):

""" for each descriptor in the first image,

select its match in the second image.

input: desc1 (descriptors for the first image),

desc2 (same for second image). """

desc1 = array([d/linalg.norm(d) for d in desc1])

desc2 = array([d/linalg.norm(d) for d in desc2])

dist_ratio = 0.6

desc1_size = desc1.shape

matchscores = zeros((desc1_size[0],1))

desc2t = desc2.T #precompute matrix transpose

for i in range(desc1_size[0]):

dotprods = dot(desc1[i,:],desc2t) #vector of dot products

dotprods = 0.9999*dotprods

#inverse cosine and sort, return index for features in second image

indx = argsort(arccos(dotprods))

#check if nearest neighbor has angle less than dist_ratio times 2nd

if arccos(dotprods)[indx[0]] < dist_ratio * arccos(dotprods)[indx[1]]:

matchscores[i] = int(indx[0])

return matchscores

def appendimages(im1,im2):

""" return a new image that appends the two images side-by-side."""

#select the image with the fewest rows and fill in enough empty rows

rows1 = im1.shape[0]

rows2 = im2.shape[0]

if rows1 < rows2:

im1 = concatenate((im1,zeros((rows2-rows1,im1.shape[1]))), axis=0)

elif rows1 > rows2:

im2 = concatenate((im2,zeros((rows1-rows2,im2.shape[1]))), axis=0)

#if none of these cases they are equal, no filling needed.

return concatenate((im1,im2), axis=1)

def plot_matches(im1,im2,locs1,locs2,matchscores,show_below=True):

""" show a figure with lines joining the accepted matches

input: im1,im2 (images as arrays), locs1,locs2 (location of features),

matchscores (as output from 'match'), show_below (if images should be shown below). """

im3 = appendimages(im1,im2)

if show_below:

im3 = vstack((im3,im3))

# show image

imshow(im3)

# draw lines for matches

cols1 = im1.shape[1]

for i in range(len(matchscores)):

if matchscores[i] > 0:

plot([locs1[i,0], locs2[matchscores[i,0],0]+cols1], [locs1[i,1], locs2[matchscores[i,0],1]], 'c')

axis('off')

def match_twosided(desc1,desc2):

""" two-sided symmetric version of match(). """

matches_12 = match(desc1,desc2)

matches_21 = match(desc2,desc1)

ndx_12 = matches_12.nonzero()[0]

#remove matches that are not symmetric

for n in ndx_12:

if matches_21[int(matches_12[n])] != n:

matches_12[n] = 0

return matches_12

if __name__ == "__main__":

process_image('box.pgm','tmp.sift')

l,d = read_features_from_file('tmp.sift')

im = array(Image.open('box.pgm'))

figure()

plot_features(im,l,True)

gray()

process_image('scene.pgm','tmp2.sift')

l2,d2 = read_features_from_file('tmp2.sift')

im2 = array(Image.open('scene.pgm'))

m = match_twosided(d,d2)

figure()

plot_matches(im,im2,l,l2,m)

gray()

show()

你可能感兴趣的:(vlfeat-sift+python+mac)