堆排序

. 不得不说说二叉树

要了解堆首先得了解一下二叉树,在计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。

二叉树的每个结点至多只有二棵子树(不存在度大于 2 的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第 i 层至多有 2i - 1 个结点;深度为 k 的二叉树至多有 2k - 1 个结点;对任何一棵二叉树 T,如果其终端结点数为 n0,度为 2 的结点数为 n2,则n0 = n2 + 1。

树和二叉树的三个主要差别:

  • 树的结点个数至少为 1,而二叉树的结点个数可以为 0
  • 树中结点的最大度数没有限制,而二叉树结点的最大度数为 2
  • 树的结点无左、右之分,而二叉树的结点有左、右之分

二叉树又分为完全二叉树(complete binary tree)和满二叉树(full binary tree)

满二叉树:一棵深度为 k,且有 2k - 1 个节点称之为满二叉树

完全二叉树:深度为 k,有 n 个节点的二叉树,当且仅当其每一个节点都与深度为 k 的满二叉树中序号为 1 至 n 的节点对应时,称之为完全二叉树

堆(二叉堆)可以视为一棵完全的二叉树,完全二叉树的一个“优秀”的性质是,除了最底层之外,每一层都是满的,这使得堆可以利用数组来表示(普通的一般的二叉树通常用链表作为基本容器表示),每一个结点对应数组中的一个元素。

如下图,是一个堆和数组的相互关系


堆排序_第1张图片
image.png

对于给定的某个结点的下标 i,可以很容易的计算出这个结点的父结点、孩子结点的下标:

Parent(i) = floor((i-1)/2),i 的父节点下标
Left(i) = 2i + 1,i 的左子节点下标
Right(i) = 2(i + 1),i 的右子节点下标

function heapSort(array) {
  function swap(array, i, j) {
    var temp = array[i];
    array[i] = array[j];
    array[j] = temp;
  }
  function maxHeapify(array, index, heapSize) {
    var iMax,
      iLeft,
      iRight;
    while (true) {
      iMax = index;
      iLeft = 2 * index + 1;
      iRight = 2 * (index + 1);
      if (iLeft < heapSize && array[index] < array[iLeft]) {
        iMax = iLeft;
      }
      if (iRight < heapSize && array[iMax] < array[iRight]) {
        iMax = iRight;
      }
      if (iMax != index) {
        swap(array, iMax, index);
        index = iMax;
      } else {
        break;
      }
    }
  }
  function buildMaxHeap(array) {
    var i,
      iParent = Math.floor(array.length / 2) - 1;
    for (i = iParent; i >= 0; i--) {
      maxHeapify(array, i, array.length);
    }
  }
  function sort(array) {
    buildMaxHeap(array);
    for (var i = array.length - 1; i > 0; i--) {
      swap(array, 0, i);
      maxHeapify(array, 0, i);
    }
    return array;
  }
  return sort(array);
}

你可能感兴趣的:(堆排序)