TextRank4ZH
TextRank算法可以用来从文本中提取关键词和摘要(重要的句子)。TextRank4ZH是针对中文文本的TextRank算法的python算法实现。
安装
方式1:
$ python setup.py install --user
方式2:
$ sudo python setup.py install
方式3:
$ pip install textrank4zh --user
方式4:
$ sudo pip install textrank4zh
Python 3下需要将上面的python改成python3,pip改成pip3。
卸载
$ pip uninstall textrank4zh
依赖
jieba >= 0.35
numpy >= 1.7.1
networkx >= 1.9.1
兼容性
在Python 2.7.9和Python 3.4.3中测试通过。
原理
TextRank的详细原理请参考:
Mihalcea R, Tarau P. TextRank: Bringing order into texts[C]. Association for Computational Linguistics, 2004.
关键词提取
将原文本拆分为句子,在每个句子中过滤掉停用词(可选),并只保留指定词性的单词(可选)。由此可以得到句子的集合和单词的集合。
每个单词作为pagerank中的一个节点。设定窗口大小为k,假设一个句子依次由下面的单词组成:
w1, w2, w3, w4, w5, ..., wn
w1, w2, ..., wk
、w2, w3, ...,wk+1
、w3, w4, ...,wk+2
等都是一个窗口。在一个窗口中的任两个单词对应的节点之间存在一个无向无权的边。
基于上面构成图,可以计算出每个单词节点的重要性。最重要的若干单词可以作为关键词。
关键短语提取
参照关键词提取提取出若干关键词。若原文本中存在若干个关键词相邻的情况,那么这些关键词可以构成一个关键词组。
例如,在一篇介绍支持向量机
的文章中,可以找到关键词支持
、向量
、机
,通过关键词组提取,可以得到支持向量机
。
摘要生成
将每个句子看成图中的一个节点,若两个句子之间有相似性,认为对应的两个节点之间有一个无向有权边,权值是相似度。
通过pagerank算法计算得到的重要性最高的若干句子可以当作摘要。
示例
见example、test。
example/example01.py:
#-*- encoding:utf-8 -*-from__future__importprint_functionimportsystry:reload(sys)
sys.setdefaultencoding('utf-8')except:passimportcodecsfromtextrank4zhimportTextRank4Keyword, TextRank4Sentence
text=codecs.open('../test/doc/01.txt','r','utf-8').read()
tr4w=TextRank4Keyword()
tr4w.analyze(text=text,lower=True,window=2)#py2中text必须是utf8编码的str或者unicode对象,py3中必须是utf8编码的bytes或者str对象print('关键词:')foritemintr4w.get_keywords(20,word_min_len=1):print(item.word, item.weight)print()print('关键短语:')forphraseintr4w.get_keyphrases(keywords_num=20,min_occur_num=2):print(phrase)
tr4s=TextRank4Sentence()
tr4s.analyze(text=text,lower=True,source='all_filters')print()print('摘要:')foritemintr4s.get_key_sentences(num=3):print(item.index, item.weight, item.sentence)#index是语句在文本中位置,weight是权重
运行结果如下:
关键词:
媒体 0.02155864734852778
高圆圆 0.020220281898126486
微 0.01671909730824073
宾客 0.014328439104001788
赵又廷 0.014035488254875914
答谢 0.013759845912857732
谢娜 0.013361244496632448
现身 0.012724133346018603
记者 0.01227742092899235
新人 0.01183128428494362
北京 0.011686712993089671
博 0.011447168887452668
展示 0.010889176260920504
捧场 0.010507502237123278
礼物 0.010447275379792245
张杰 0.009558332870902892
当晚 0.009137982757893915
戴 0.008915271161035208
酒店 0.00883521621207796
外套 0.008822082954131174
关键短语:
微博
摘要:
摘要:
0 0.0709719557171 中新网北京12月1日电(记者 张曦) 30日晚,高圆圆和赵又廷在京举行答谢宴,诸多明星现身捧场,其中包括张杰(微博)、谢娜(微博)夫妇、何炅(微博)、蔡康永(微博)、徐克、张凯丽、黄轩(微博)等
6 0.0541037236415 高圆圆身穿粉色外套,看到大批记者在场露出娇羞神色,赵又廷则戴着鸭舌帽,十分淡定,两人快步走进电梯,未接受媒体采访
27 0.0490428312984 记者了解到,出席高圆圆、赵又廷答谢宴的宾客近百人,其中不少都是女方的高中同学
##使用说明
类TextRank4Keyword、TextRank4Sentence在处理一段文本时会将文本拆分成4种格式:
- sentences:由句子组成的列表。
- words_no_filter:对sentences中每个句子分词而得到的两级列表。
- words_no_stop_words:去掉words_no_filter中的停止词而得到的二维列表。
- words_all_filters:保留words_no_stop_words中指定词性的单词而得到的二维列表。
例如,对于:
这间酒店位于北京东三环,里面摆放很多雕塑,文艺气息十足。答谢宴于晚上8点开始。
#-*- encoding:utf-8 -*-from__future__importprint_functionimportcodecsfromtextrank4zhimportTextRank4Keyword, TextRank4Sentenceimportsystry:reload(sys)
sys.setdefaultencoding('utf-8')except:passtext="这间酒店位于北京东三环,里面摆放很多雕塑,文艺气息十足。答谢宴于晚上8点开始。"tr4w=TextRank4Keyword()
tr4w.analyze(text=text,lower=True,window=2)print()print('sentences:')forsintr4w.sentences:print(s)#py2中是unicode类型。py3中是str类型。print()print('words_no_filter')forwordsintr4w.words_no_filter:print('/'.join(words))#py2中是unicode类型。py3中是str类型。print()print('words_no_stop_words')forwordsintr4w.words_no_stop_words:print('/'.join(words))#py2中是unicode类型。py3中是str类型。print()print('words_all_filters')forwordsintr4w.words_all_filters:print('/'.join(words))#py2中是unicode类型。py3中是str类型。
运行结果如下:
sentences:
这间酒店位于北京东三环,里面摆放很多雕塑,文艺气息十足
答谢宴于晚上8点开始
words_no_filter
这/间/酒店/位于/北京/东三环/里面/摆放/很多/雕塑/文艺/气息/十足
答谢/宴于/晚上/8/点/开始
words_no_stop_words
间/酒店/位于/北京/东三环/里面/摆放/很多/雕塑/文艺/气息/十足
答谢/宴于/晚上/8/点
words_all_filters
酒店/位于/北京/东三环/摆放/雕塑/文艺/气息
答谢/宴于/晚上
API
TODO.
类的实现、函数的参数请参考源码注释。
License
MIT