Jensen不等式讲解与证明

琴生不等式,是由丹麦数学家约翰•延森(Johan Jensen)命名,也成为Jensen不等式或者詹森不等式。码字不易,喜欢请点赞,谢谢!!!有问题随时欢迎交流。

首先,对于如凸函数 f ( x ) f(x) f(x),对任意 0 < = α < = 1 0<=\alpha <=1 0<=α<=1,有如下不等式成立:
α f ( x ) + ( 1 − α ) f ( y ) > = f ( α x + ( 1 − α ) y ) \alpha f(x)+(1-\alpha)f(y)>=f(\alpha x+(1-\alpha)y) αf(x)+(1α)f(y)>=f(αx+(1α)y)
如下图所示。
Jensen不等式讲解与证明_第1张图片
现在我们证明对于凸函数 f ( x ) f(x) f(x)来说,对任意 λ j > = 0 \lambda _j>=0 λj>=0,并且有 ∑ j = 1 J λ j = 1 \sum_{j=1}^{J}\lambda _j=1 j=1Jλj=1,如下不等式成立:
∑ j = 1 J λ j f ( x j ) > = f ( ∑ j = 1 J λ j x j ) \sum_{j=1}^{J}\lambda _jf(x_j)>=f(\sum_{j=1}^{J}\lambda _jx_j) j=1Jλjf(xj)>=f(j=1Jλjxj)
上面这个不等式就是著名的Jensen不等式。

证明:下面是Jensen不等式的证明
(1)首先对于 J = 1 J=1 J=1,很明显不等式成立;
(2)对于 J = 2 J=2 J=2,由上面的凸函数图可知, λ 1 f ( x 1 ) + λ 2 f ( x 2 ) > = f ( λ 1 x 1 + λ 2 x 2 ) \lambda _1f(x_1)+\lambda _2f(x_2)>=f(\lambda _1x_1+\lambda _2x_2) λ1f(x1)+λ2f(x2)>=f(λ1x1+λ2x2),不等式成立;
(3)假设当 J = n J=n J=n时,不等式成立,即 ∑ j = 1 n λ j f ( x j ) > = f ( ∑ j = 1 n λ j x j ) \sum_{j=1}^{n}\lambda _jf(x_j)>=f(\sum_{j=1}^{n}\lambda _jx_j) j=1nλjf(xj)>=f(j=1nλjxj)
下面证明 J = n + 1 J=n+1 J=n+1时不等式成立即可:
∑ j = 1 n + 1 λ j f ( x j ) = λ n + 1 f ( x n + 1 ) + ∑ j = 1 n λ j f ( x j ) = λ n + 1 f ( x n + 1 ) + ( 1 − λ n + 1 ) ∑ j = 1 n λ j 1 − λ n + 1 f ( x j ) > = λ n + 1 f ( x n + 1 ) + ( 1 − λ n + 1 ) f ( ∑ j = 1 n λ j 1 − λ n + 1 x j ) > = f ( λ n + 1 x n + 1 + ( 1 − λ n + 1 ) ∑ j = 1 n λ j 1 − λ n + 1 x j ) = f ( λ n + 1 x n + 1 + ∑ j = 1 n λ j x j ) = f ( ∑ j = 1 n + 1 λ j x j ) \begin{aligned} \sum_{j=1}^{n+1}\lambda _jf(x_j) = &\lambda _{n+1}f(x_{n+1})+\sum_{j=1}^{n}\lambda _jf(x_j)\\ &=\lambda _{n+1}f(x_{n+1})+({1-\lambda _{n+1}})\sum_{j=1}^{n}\frac{\lambda _j}{1-\lambda _{n+1}}f(x_j)\\ &>=\lambda _{n+1}f(x_{n+1})+({1-\lambda _{n+1}})f(\sum_{j=1}^{n}\frac{\lambda _j}{1-\lambda _{n+1}}x_j)\\ &>=f(\lambda _{n+1}x_{n+1}+({1-\lambda _{n+1}})\sum_{j=1}^{n}\frac{\lambda _j}{1-\lambda _{n+1}}x_j)\\ &=f(\lambda _{n+1}x_{n+1}+\sum_{j=1}^{n}\lambda _jx_j)\\ &=f(\sum_{j=1}^{n+1}\lambda _jx_j)\\ \end{aligned} j=1n+1λjf(xj)=λn+1f(xn+1)+j=1nλjf(xj)=λn+1f(xn+1)+(1λn+1)j=1n1λn+1λjf(xj)>=λn+1f(xn+1)+(1λn+1)f(j=1n1λn+1λjxj)>=f(λn+1xn+1+(1λn+1)j=1n1λn+1λjxj)=f(λn+1xn+1+j=1nλjxj)=f(j=1n+1λjxj)
因此,当 J = n + 1 J=n+1 J=n+1时,不等式成立。

通过上面三步的即证明了Jensen不等式成立。

同样可以证明:对于凹函数 f ( x ) f(x) f(x)来说,对任意 λ j > = 0 \lambda _j>=0 λj>=0,并且有 ∑ j = 1 J λ j = 1 \sum_{j=1}^{J}\lambda _j=1 j=1Jλj=1,如下不等式成立:
∑ j = 1 J λ j f ( x j ) < = f ( ∑ j = 1 J λ j x j ) \sum_{j=1}^{J}\lambda _jf(x_j)<=f(\sum_{j=1}^{J}\lambda _jx_j) j=1Jλjf(xj)<=f(j=1Jλjxj)

你可能感兴趣的:(数学,Jensen不等式,证明,讲解,凹函数,凸函数)