子曰:“君子坦荡荡,小人长戚戚。” 《论语》:述而篇
百篇博客系列篇.本篇为:
v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪里打卡上班
硬件架构相关篇为:
- v22.03 鸿蒙内核源码分析(汇编基础) | CPU在哪里打卡上班
- v23.04 鸿蒙内核源码分析(汇编传参) | 如何传递复杂的参数
- v36.05 鸿蒙内核源码分析(工作模式) | CPU是韦小宝,七个老婆
- v38.06 鸿蒙内核源码分析(寄存器) | 小强乃宇宙最忙存储器
- v39.06 鸿蒙内核源码分析(异常接管) | 社会很单纯,复杂的是人
- v40.03 鸿蒙内核源码分析(汇编汇总) | 汇编可爱如邻家女孩
- v42.05 鸿蒙内核源码分析(中断切换) | 系统因中断活力四射
- v43.05 鸿蒙内核源码分析(中断概念) | 海公公的日常工作
- v44.04 鸿蒙内核源码分析(中断管理) | 江湖从此不再怕中断
本篇通过拆解一段很简单的汇编代码来快速认识汇编,为读懂鸿蒙汇编打基础.系列篇后续将逐个剖析鸿蒙的汇编文件.
汇编很简单
第一: 要认定汇编语言一定是简单的,没有高深的东西,无非就是数据的搬来搬去,运行时数据主要待在两个地方:内存和寄存器。寄存器是CPU内部存储器,离运算器最近,所以最快.
第二: 运行空间(栈空间)就是CPU打卡上班的地方,内核设计者规定谁请CPU上班由谁提供场地,用户程序提供的场地叫用户栈,敏感工作CPU要带回公司做,公司提供的场地叫内核栈,敏感工作叫系统调用,系统调用的本质理解是CPU要切换工作模式即切换办公场地。
第三:CPU的工作顺序是流水线的,它只认指令,而且只去一个地方(指向代码段的PC寄存器)拿指令运算消化。指令集是告诉外界我CPU能干什么活并提供对话指令,汇编语言是人和CPU能愉快沟通不拧巴的共识语言。一一对应了CPU指令,又能确保记性不好的人类能模块化的设计idea, 先看一段C编译成汇编代码再来说模块化。
square(c → 汇编)
//编译器: armv7-a clang (trunk)
//++++++++++++ square(c -> 汇编)++++++++++++++++++++++++
int square(int a,int b){
return a*b;
}
square(int, int):
sub sp, sp, #8 @sp减去8,意思为给square分配栈空间,只用2个栈空间完成计算
str r0, [sp, #4] @第一个参数入栈
str r1, [sp] @第二个参数入栈
ldr r1, [sp, #4] @取出第一个参数给r1
ldr r2, [sp] @取出第二个参数给r2
mul r0, r1, r2 @执行a*b给R0,返回值的工作一直是交给R0的
add sp, sp, #8 @函数执行完了,要释放申请的栈空间
bx lr @子程序返回,等同于mov pc,lr,即跳到调用处
fp(c → 汇编)
//++++++++++++ fp(c -> 汇编)++++++++++++++++++++++++
int fp(int b)
{
int a = 1;
return square(a+b,a+b);
}
fp(int):
push {r11, lr} @r11(fp)/lr入栈,保存调用者main的位置
mov r11, sp @r11用于保存sp值,函数栈开始位置
sub sp, sp, #8 @sp减去8,意思为给fp分配栈空间,只用2个栈空间完成计算
str r0, [sp, #4] @先保存参数值,放在SP+4,此时r0中存放的是参数
mov r0, #1 @r0=1
str r0, [sp] @再把1也保存在SP的位置
ldr r0, [sp] @把SP的值给R0
ldr r1, [sp, #4] @把SP+4的值给R1
add r1, r0, r1 @执行r1=a+b
mov r0, r1 @r0=r1,用r0,r1传参
bl square(int, int)@先mov lr, pc 再mov pc square(int, int)
mov sp, r11 @函数执行完了,要释放申请的栈空间
pop {r11, lr} @弹出r11和lr,lr是专用标签,弹出就自动复制给lr寄存器
bx lr @子程序返回,等同于mov pc,lr,即跳到调用处
main(c → 汇编)
//++++++++++++ main(c -> 汇编)++++++++++++++++++++++++
int main()
{
int sum = 0;
for(int a = 0;a < 100; a++){
sum = sum + fp(a);
}
return sum;
}
main:
push {r11, lr} @r11(fp)/lr入栈,保存调用者的位置
mov r11, sp @r11用于保存sp值,函数栈开始位置
sub sp, sp, #16 @sp减去16,意思为给main分配栈空间,只用4个栈空间完成计算
mov r0, #0 @初始化r0
str r0, [r11, #-4] @执行sum = 0
str r0, [sp, #8] @sum将始终占用SP+8的位置
str r0, [sp, #4] @a将始终占用SP+4的位置
b .LBB1_1 @跳到循环开始位置
.LBB1_1: @循环开始位置入口
ldr r0, [sp, #4] @取出a的值给r0
cmp r0, #99 @跟99比较
bgt .LBB1_4 @大于99,跳出循环 mov pc .LBB1_4
b .LBB1_2 @继续循环,直接 mov pc .LBB1_2
.LBB1_2: @符合循环条件入口
ldr r0, [sp, #8] @取出sum的值给r0,sp+8用于写SUM的值
str r0, [sp] @先保存SUM的值,SP的位置用于读SUM值
ldr r0, [sp, #4] @r0用于传参,取出A的值给r0作为fp的参数
bl fp(int) @先mov lr, pc再mov pc fp(int)
mov r1, r0 @fp的返回值为r0,保存到r1
ldr r0, [sp] @取出SUM的值
add r0, r0, r1 @计算新sum的值,由R0保存
str r0, [sp, #8] @将新sum保存到SP+8的位置
b .LBB1_3 @无条件跳转,直接 mov pc .LBB1_3
.LBB1_3: @完成a++操作入口
ldr r0, [sp, #4] @SP+4中记录是a的值,赋给r0
add r0, r0, #1 @r0增加1
str r0, [sp, #4] @把新的a值放回SP+4里去
b .LBB1_1 @跳转到比较 a < 100 处
.LBB1_4: @循环结束入口
ldr r0, [sp, #8] @最后SUM的结果给R0,返回值的工作一直是交给R0的
mov sp, r11 @函数执行完了,要释放申请的栈空间
pop {r11, lr} @弹出r11和lr,lr是专用标签,弹出就自动复制给lr寄存器
bx lr @子程序返回,跳转到lr处等同于 MOV PC, LR
代码有点长,都加了注释,如果能直接看懂那么恭喜你,鸿蒙内核的6个汇编文件基于也就懂了。这是以下C文件全貌
文件全貌
#include
#include
int square(int a,int b){
return a*b;
}
int fp(int b)
{
int a = 1;
return square(a+b,a+b);
}
int main()
{
int sum = 0;
for(int a = 0;a < 100; a++){
sum = sum + fp(a);
}
return sum;
}
代码很简单谁都能看懂,代码很典型,具有代表性,有循环,有判断,有运算,有多级函数调用。编译后的汇编代码基本和C语言的结构差不太多, 区别是对循环的实现用了四个模块,四个模块也好理解: 一个是开始块(LBB1_1), 一个符合条件的处理块(LBB1_2),一个条件发生变化块(LBB1_3),最后收尾块(LBB1_4).
按块逐一剖析.
先看最短的那个
int square(int a,int b){
return a*b;
}
//编译成
square(int, int):
sub sp, sp, #8 @sp减去8,意思为给square分配栈空间,只用2个栈空间完成计算
str r0, [sp, #4] @第一个参数入栈
str r1, [sp] @第二个参数入栈
ldr r1, [sp, #4] @取出第一个参数给r1
ldr r2, [sp] @取出第二个参数给r2
mul r0, r1, r2 @执行a*b给R0,返回值的工作一直是交给R0的
add sp, sp, #8 @函数执行完了,要释放申请的栈空间
bx lr @子程序返回,等同于mov pc,lr,即跳到调用处
首先上来一句 sub sp, sp, #8 等同于 sp = sp - 8 ,CPU运行需要场地,这个场地就是栈 ,SP是指向栈的指针,表示此时用栈的刻度. 代码和鸿蒙内核用栈方式一样,都采用了递减满栈的方式(FD). 什么是递减满栈? 递减指的是栈底地址高于栈顶地址,栈的生长方向是递减的, 满栈指的是SP指针永远指向栈顶. 每个函数都有自己独立的栈底和栈顶,之间的空间统称栈帧.可以理解为分配了一块 区域给函数运行,sub sp, sp, #8 代表申请2个栈空间,一个栈空间按四个字节算. 用完要不要释放?当然要,add sp, sp, #8 就是释放栈空间. 是一对的,减了又加回去,空间就归还了. ldr r1, [sp, #4] 的意思是取出SP+4这个虚拟地址的值给r1寄存器,而SP的指向并没有改变的,还是在栈顶, 为什么要+呢, +就是往回数, 定位到分配的栈空间上.
一定要理解递减满栈,这是关键! 否则读不懂内核汇编代码.
入参方式
一般都是通过寄存器(r0..r10)传参,fp调用square之前会先将参数给(r0..r10)
add r1, r0, r1 @执行r1=a+b
mov r0, r1 @r0=r1,用r0,r1传参
bl square(int, int)@先mov lr, pc 再mov pc square(int, int)
到了square中后,先让 r0,r1入栈,目的是保存参数值, 因为 square中要用r0,r1 ,
str r0, [sp, #4] @先入栈保存第一个参数
str r1, [sp] @再入栈保存第二个参数
ldr r1, [sp, #4] @再取出第一个参数给r1,(a*b)中a值
ldr r2, [sp] @再取出第二个参数给r2,用于计算 (a*b)中b值
是不是感觉这段汇编很傻,直接不保存计算不就完了吗,这个是流程问题,编译器统一先保存参数,至于你想怎么用它不管,也管不了. 另外返回值都是默认统一给r0保存. square中将(a*b)的结果给了r0,回到fp中取出R0对fp来说这就是square的返回值,这是规定.
函数调用 main 和 fp 中都需要调用其他函数,所以都出现了
push {r11, lr}
//....
pop {r11, lr}
这哥俩也是成对出现的,这是函数调用的必备装备,作用是保存和恢复调用者的现场,例如 main → fp, fp要保存main的栈帧范围和指令位置, lr保存的是main函数执行到哪个指令的位置, r11的作用是指向main的栈顶位置,如此fp执行完后return回main的时候,先mov pc,lr, PC寄存器的值一变, 表示执行的代码就变了,又回到了main的指令和栈帧继续未完成的事业.
内存和寄存器数据怎么搬?
数据主要待在两个地方:内存和寄存器. 寄存器<->寄存器 , 内存<->寄存器 , 内存<->内存 搬运指令都不一样.
str r1, [sp] @ 寄存器->内存
ldr r1, [sp, #4] @ 内存->寄存器
这又是一对,用于 内存<->寄存器之间,熟知的 mov r0, r1 用于 寄存器<->寄存器
追问三个问题
第一:如果是可变参数怎么办? 100个参数怎么整, 通过寄存器总共就12个,不够传参啊
第二:返回值可以有多个吗?
第三:数据搬运可以不经过CPU吗?
百篇博客分析.深挖内核地基
- 给鸿蒙内核源码加注释过程中,整理出以下文章。内容立足源码,常以生活场景打比方尽可能多的将内核知识点置入某种场景,具有画面感,容易理解记忆。说别人能听得懂的话很重要! 百篇博客绝不是百度教条式的在说一堆诘屈聱牙的概念,那没什么意思。更希望让内核变得栩栩如生,倍感亲切.确实有难度,自不量力,但已经出发,回头已是不可能的了。
- 与代码有bug需不断debug一样,文章和注解内容会存在不少错漏之处,请多包涵,但会反复修正,持续更新,v**.xx 代表文章序号和修改的次数,精雕细琢,言简意赅,力求打造精品内容。
按功能模块:
基础工具 | 加载运行 | 进程管理 | 编译构建 |
---|---|---|---|
双向链表 位图管理 用栈方式 定时器 原子操作 时间管理 |
ELF格式 ELF解析 静态链接 重定位 进程映像 |
进程管理 进程概念 Fork 特殊进程 进程回收 信号生产 信号消费 Shell编辑 Shell解析 |
编译环境 编译过程 环境脚本 构建工具 gn应用 忍者ninja |
进程通讯 | 内存管理 | 前因后果 | 任务管理 |
自旋锁 互斥锁 进程通讯 信号量 事件控制 消息队列 |
内存分配 内存管理 内存汇编 内存映射 内存规则 物理内存 |
总目录 调度故事 内存主奴 源码注释 源码结构 静态站点 |
时钟任务 任务调度 任务管理 调度队列 调度机制 线程概念 并发并行 CPU 系统调用 任务切换 |
文件系统 | 硬件架构 | ||
文件概念 文件系统 索引节点 挂载目录 根文件系统 字符设备 VFS 文件句柄 管道文件 |
汇编基础 汇编传参 工作模式 寄存器 异常接管 汇编汇总 中断切换 中断概念 中断管理 |
百万汉字注解.精读内核源码
四大码仓中文注解 . 定期同步官方代码
鸿蒙研究站( weharmonyos ) | 每天死磕一点点,原创不易,欢迎转载,请注明出处。若能支持点赞更好,感谢每一份支持。