Spark从入门到精通01之基础理解

1. The basic info about Spark

1.1. what is Spark?

Spark 是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。

  • Spark 是一种由 Scala 语言开发的快速、通用、可扩展的大数据分析引擎
  • Spark Core 中提供了 Spark 最基础与最核心的功能
  • Spark SQL 是 Spark 用来操作结构化数据的组件。通过 Spark SQL,用户可以使用SQL 或者 Apache Hive 版本的 SQL 方言(HQL)来查询数据。
  • Spark Streaming 是 Spark 平台上针对实时数据进行流式计算的组件,提供了丰富的处理数据流的 API。

1.2. The core modules of Spark

Spark从入门到精通01之基础理解_第1张图片

1.2.1. Spark Core

Spark Core 中提供了 Spark 最基础与最核心的功能,Spark 其他的功能如:Spark SQL,Spark Streaming,GraphX, MLlib 都是在 Spark Core 的基础上进行扩展的

1.2.2. Spark SQL

Spark SQL 是 Spark 用来操作结构化数据的组件。通过 Spark SQL,用户可以使用 SQL或者 Apache Hive 版本的 SQL 方言(HQL)来查询数据。

1.2.3. Spark Streaming

Spark Streaming 是 Spark 平台上针对实时数据进行流式计算的组件,提供了丰富的处理数据流的 API。

1.2.4. Spark MLlib

MLlib 是 Spark 提供的一个机器学习算法库。MLlib 不仅提供了模型评估、数据导入等额外的功能,还提供了一些更底层的机器学习原语。

1.2.5. Spark GraphX

GraphX 是 Spark 面向图计算提供的框架与算法库。

1.3. The first Demo of Spark with Scala

1.3.1. Download the Scala

download the Scala from the official website: https://www.scala-lang.org/download/

1.3.2. Add the dependency in the idea


<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <parent>
        <artifactId>sparkartifactId>
        <groupId>com.michaelgroupId>
        <version>1.0.0version>
    parent>
    <modelVersion>4.0.0modelVersion>

    <artifactId>spark-coreartifactId>

    <properties>
        <maven.compiler.source>8maven.compiler.source>
        <maven.compiler.target>8maven.compiler.target>
    properties>
    <dependencies>
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-core_2.12artifactId>
            <version>3.0.0version>
        dependency>
    dependencies>
    <build>
        <plugins>
            
            <plugin>
                <groupId>net.alchim31.mavengroupId>
                <artifactId>scala-maven-pluginartifactId>
                <version>3.2.2version>
                <executions>
                <execution>
                    
                    <goals>
                        <goal>testCompilegoal>
                    goals>
                execution>
                executions>
            plugin>
            <plugin>
                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-assembly-pluginartifactId>
                <version>3.1.0version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependenciesdescriptorRef>
                    descriptorRefs>
                configuration>
                <executions>
                    <execution>
                        <id>make-assemblyid>
                        <phase>packagephase>
                        <goals>
                            <goal>singlegoal>
                        goals>
                    execution>
                executions>
            plugin>
        plugins>
    build>

project>

1.3.3. Install the Scala plugin in the idea

Spark从入门到精通01之基础理解_第2张图片

1.3.4. Develop your first demo of Spark

package com.michael.demo

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object MichaelDemo{
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("MichaelTest")
    val sc: SparkContext = new SparkContext(sparkConf)

    val fileRDD: RDD[String] = sc.textFile("spark-core/src/main/resources/michael.txt")

    val wordRDD: RDD[String] = fileRDD.flatMap(_.split(" "))

    val word2OneRDD: RDD[(String, Int)] = wordRDD.map((_, 1))

    val word2CountRDD: RDD[(String, Int)] = word2OneRDD.reduceByKey(_ + _)

    val word2Count: Array[(String, Int)] = word2CountRDD.collect()

    word2Count.foreach(println)

    sc.stop()
  }
}

Spark从入门到精通01之基础理解_第3张图片

2. Spark running environment

2.1. Local mode

2.1.1. Download the Spark

Download the Spark from the official website: https://spark.apache.org/downloads.html

2.1.2. Launch the Spark

Execute the spark-shell in your unpackage path/bin/

2.1.3. Check the Spark UI

Check the URL: localhost:4040
Spark从入门到精通01之基础理解_第4张图片

2.1.4. Run a demo

run a demo with command

scala> sc.textFile("../data/michael.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect
res1: Array[(String, Int)] = Array((scala,2), (learn,1), (here,1), (hello,1), (joy,1), (sparkcore,1), (test,4), (spark,2), (hi,1), (sparkSQL,1), (michael,1))
run a demo with submitting a jar

2.2. Standalone mode

2.3. Yarn mode

2.4. K8S mode

2.5. Mesos mode

3. Spark Runtime Architecture

Spark 框架的核心是一个计算引擎,整体来说,它采用了标准 master-slave 的结构。如图所示,它展示了一个 Spark 执行时的基本结构。图形中的 Driver 表示 master,负责管理整个集群中的作业任务调度。图形中的 Executor 则是 slave,负责实际执行任务。
Spark从入门到精通01之基础理解_第5张图片

3.1. Core components of Spark

3.1.1. Driver

Spark 驱动器节点,用于执行 Spark 任务中的 main 方法,负责实际代码的执行工作。Driver 在 Spark 作业执行时主要负责:

  • 将用户程序转化为作业(job)
  • 在 Executor 之间调度任务(task)
  • 跟踪 Executor 的执行情况
  • 通过 UI 展示查询运行情况

实际上,我们无法准确地描述 Driver 的定义,因为在整个的编程过程中没有看到任何有关Driver 的字眼。所以简单理解,所谓的 Driver 就是驱使整个应用运行起来的程序,也称之为Driver 类。

3.1.2. Executor

Spark Executor 是集群中工作节点(Worker)中的一个 JVM 进程,负责在 Spark 作业中运行具体任务(Task),任务彼此之间相互独立。Spark 应用启动时,Executor 节点被同时启动,并且始终伴随着整个 Spark 应用的生命周期而存在。如果有 Executor 节点发生了故障或崩溃,Spark 应用也可以继续执行,会将出错节点上的任务调度到其他 Executor 节点上继续运行。

Executor 有两个核心功能:

  • 负责运行组成 Spark 应用的任务,并将结果返回给驱动器进程
  • 它们通过自身的块管理器(Block Manager)为用户程序中要求缓存的 RDD 提供内存式存储。RDD 是直接缓存在 Executor 进程内的,因此任务可以在运行时充分利用缓存数据加速运算。

3.1.3. Master & Worker

Spark 集群的独立部署环境中,不需要依赖其他的资源调度框架,自身就实现了资源调度的功能,所以环境中还有其他两个核心组件:Master 和 Worker,这里的 Master 是一个进程,主要负责资源的调度和分配,并进行集群的监控等职责,类似于 Yarn 环境中的 RM, 而Worker 呢,也是进程,一个 Worker 运行在集群中的一台服务器上,由 Master 分配资源对数据进行并行的处理和计算,类似于 Yarn 环境中 NM。

3.1.4. ApplicationMaster

Hadoop 用户向 YARN 集群提交应用程序时,提交程序中应该包含 ApplicationMaster,用于向资源调度器申请执行任务的资源容器 Container,运行用户自己的程序任务 job,监控整个任务的执行,跟踪整个任务的状态,处理任务失败等异常情况。

说的简单点就是,ResourceManager(资源)和 Driver(计算)之间的解耦合靠的就是ApplicationMaster

3.2. Core concepts

3.2.1. Executor & Core

Spark Executor 是集群中运行在工作节点(Worker)中的一个 JVM 进程,是整个集群中的专门用于计算的节点。在提交应用中,可以提供参数指定计算节点的个数,以及对应的资源。这里的资源一般指的是工作节点 Executor 的内存大小和使用的虚拟 CPU 核(Core)数量。

应用程序相关启动参数如下:

序号 名称 说明
1 –num-executors 配置 Executor 的数量
2 –executor-memory 配置每个 Executor 的内存大小
3 –executor-cores 配置每个 Executor 的虚拟 CPU core 数量

3.2.2. Parallelism

在分布式计算框架中一般都是多个任务同时执行,由于任务分布在不同的计算节点进行计算,所以能够真正地实现多任务并行执行,记住,这里是并行,而不是并发。这里我们将整个集群并行执行任务的数量称之为并行度。那么一个作业到底并行度是多少呢?这个取决于框架的默认配置。应用程序也可以在运行过程中动态修改。

3.2.3. DAG

Spark从入门到精通01之基础理解_第6张图片

大数据计算引擎框架我们根据使用方式的不同一般会分为四类,其中第一类就是Hadoop 所承载的 MapReduce,它将计算分为两个阶段,分别为 Map 阶段 和 Reduce 阶段。对于上层应用来说,就不得不想方设法去拆分算法,甚至于不得不在上层应用实现多个 Job的串联,以完成一个完整的算法,例如迭代计算。 由于这样的弊端,催生了支持 DAG 框架的产生。因此,支持 DAG 的框架被划分为第二代计算引擎。如 Tez 以及更上层的Oozie。这里我们不去细究各种 DAG 实现之间的区别,不过对于当时的 Tez 和 Oozie 来说,大多还是批处理的任务。接下来就是以 Spark 为代表的第三代的计算引擎。第三代计算引擎的特点主要是 Job 内部的 DAG 支持(不跨越 Job),以及实时计算。

有向无环图,并不是真正意义的图形,而是由 Spark 程序直接映射成的数据流的高级抽象模型。简单理解就是将整个程序计算的执行过程用图形表示出来,这样更直观,更便于理解,可以用于表示程序的拓扑结构。

DAG(Directed Acyclic Graph)有向无环图是由点和线组成的拓扑图形,该图形具有方向,不会闭环

3.3. Submit Process

提交流程就是开发的应用程序通过 Spark 客户端提交给 Spark 运行环境执行计算的流程。在不同的部署环境中,这个提交过程基本相同,但是又有细微的区别,这里介绍基于 Yarn 环境的两种流程。
Spark从入门到精通01之基础理解_第7张图片

Spark 应用程序提交到 Yarn 环境中执行的时候,一般会有两种部署执行的方式:Client和 Cluster。两种模式主要区别在于:Driver 程序的运行节点位置。

3.3.1. Yarn Client mode

Client 模式将用于监控和调度的 Driver 模块在客户端执行,而不是在 Yarn 中。

  • Driver 在任务提交的本地机器上运行
  • Driver 启动后会和 ResourceManager 通讯申请启动 ApplicationMaster
  • ResourceManager 分配 container,在合适的 NodeManager 上启动 ApplicationMaster,负- 责向 ResourceManager 申请 Executor 内存
  • ResourceManager 接到 ApplicationMaster 的资源申请后会分配 container,然后 ApplicationMaster 在资源分配指定的 NodeManager 上启动 Executor 进程
  • Executor 进程启动后会向 Driver 反向注册,Executor 全部注册完成后 Driver 开始执行main 函数
  • 之后执行到 Action 算子时,触发一个 Job,并根据宽依赖开始划分 stage,每个 stage 生成对应的 TaskSet,之后将 task 分发到各个 Executor 上执行。

Detail of Process:

1、通过SparkSubmit类的launch的函数直接调用作业的main函数(通过反射机制实现),如果是集群模式就会调用Client的main函数。
2、而应用程序的main函数一定都有个SparkContent,并对其进行初始化;
3、在SparkContent初始化中将会依次做如下的事情:设置相关的配置、注册MapOutputTracker、BlockManagerMaster、BlockManager,创建taskScheduler和dagScheduler;其中比较重要的是创建taskScheduler和dagScheduler。在创建taskScheduler的时候会根据我们传进来的master来选择Scheduler和SchedulerBackend。由于我们选择的是yarn-client模式,程序会选择YarnClientClusterScheduler和YarnClientSchedulerBackend,并将YarnClientSchedulerBackend的实例初始化YarnClientClusterScheduler,上面两个实例的获取都是通过反射机制实现的,YarnClientSchedulerBackend类 是CoarseGrainedSchedulerBackend类的子类,YarnClientClusterScheduler是TaskSchedulerImpl的子类,仅仅重写了TaskSchedulerImpl中的getRackForHost方法。
4、初始化完taskScheduler后,将创建dagScheduler,然后通过taskScheduler.start()启动taskScheduler,而在taskScheduler启动的过程中也会调用SchedulerBackend的start方法。在SchedulerBackend启动的过程中将会初始化一些参数,封装在ClientArguments中,并将封装好的ClientArguments传进Client类中,并client.runApp()方法获取Application ID。
5、client.runApp里面的做是和前面客户端进行操作那节类似,不同的是在里面启动是ExecutorLauncher(yarn-cluster模式启动的是ApplicationMaster)。
6、在ExecutorLauncher里面会初始化并启动amClient,然后向ApplicationMaster注册该Application。注册完之后将会等待driver的启动,当driver启动完之后,会创建一个MonitorActor对象用于和CoarseGrainedSchedulerBackend进行通信(只有事件AddWebUIFilter他们之间才通信,Task的运行状况不是通过它和CoarseGrainedSchedulerBackend通信的)。然后就是设置addAmIpFilter,当作业完成的时候,ExecutorLauncher将通过amClient设置Application的状态为FinalApplicationStatus.SUCCEEDED。
7、分配Executors,这里面的分配逻辑和yarn-cluster里面类似。
8、最后,Task将在CoarseGrainedExecutorBackend里面运行,然后运行状况会通过Akka通知CoarseGrainedScheduler,直到作业运行完成。
9、在作业运行的时候,YarnClientSchedulerBackend会每隔1秒通过client获取到作业的运行状况,并打印出相应的运行信息,当Application的状态是FINISHED、FAILED和KILLED中的一种,那么程序将退出等待。
10、最后有个线程会再次确认Application的状态,当Application的状态是FINISHED、FAILED和KILLED中的一种,程序就运行完成,并停止SparkContext。

3.3.2. Yarn Cluster mode

Cluster 模式将用于监控和调度的 Driver 模块启动在 Yarn 集群资源中执行。

  • 在 YARN Cluster 模式下,任务提交后会和 ResourceManager 通讯申请启动ApplicationMaster,
  • 随后 ResourceManager 分配 container,在合适的 NodeManager 上启动 ApplicationMaster,此时的 ApplicationMaster 就是 Driver。
  • Driver 启动后向 ResourceManager 申请 Executor 内存,ResourceManager 接到ApplicationMaster 的资源申请后会分配 container,然后在合适的 NodeManager 上启动Executor 进程
  • Executor 进程启动后会向 Driver 反向注册,Executor 全部注册完成后 Driver 开始执行main 函数,
  • 之后执行到 Action 算子时,触发一个 Job,并根据宽依赖开始划分 stage,每个 stage 生成对应的 TaskSet,之后将 task 分发到各个 Executor 上执行。

Detail of process:

Manipulation in client:

1、根据yarnConf来初始化yarnClient,并启动yarnClient
2、创建客户端Application,并获取Application的ID,进一步判断集群中的资源是否满足executor和ApplicationMaster申请的资源,如果不满足则抛出IllegalArgumentException;
3、设置资源、环境变量:其中包括了设置Application的Staging目录、准备本地资源(jar文件、log4j.properties)、设置Application其中的环境变量、创建Container启动的Context等;
4、设置Application提交的Context,包括设置应用的名字、队列、AM的申请的Container、标记该作业的类型为Spark;
5、申请Memory,并最终通过yarnClient.submitApplication向ResourceManager提交该Application。

Process on YARN Cluster:

1、运行ApplicationMaster的run方法;
2、设置好相关的环境变量。
3、创建amClient,并启动;
4、在Spark UI启动之前设置Spark UI的AmIpFilter;
5、在startUserClass函数专门启动了一个线程(名称为Driver的线程)来启动用户提交的Application,也就是启动了Driver。在Driver中将会初始化SparkContext;
6、等待SparkContext初始化完成,最多等待spark.yarn.applicationMaster.waitTries次数(默认为10),如果等待了的次数超过了配置的,程序将会退出;否则用SparkContext初始化yarnAllocator

// 怎么知道SparkContext初始化完成?

// 其实在5步骤中启动Application的过程中会初始化SparkContext,在初始化SparkContext的时候将会创建YarnClusterScheduler,在SparkContext初始化完成的时候,会调用
// YarnClusterScheduler类中postStartHook方法,而该方法会通知ApplicationMaster已经初始化好了SparkContext

7、当SparkContext、Driver初始化完成的时候,通过amClient向ResourceManager注册ApplicationMaster
8、分配并启动Executeors。在启动Executeors之前,先要通过yarnAllocator获取到numExecutors个Container,然后在Container中启动Executeors。如果在启动Executors的过程中失败的次数达到了maxNumExecutorFailures的次数,maxNumExecutorFailures的计算规则如下:

// Default to numExecutors * 2, with minimum of 3
private val maxNumExecutorFailures = sparkConf.getInt("spark.yarn.max.executor.failures",
    sparkConf.getInt("spark.yarn.max.worker.failures", math.max(args.numExecutors * 2, 3)))

那么这个Application将失败,将Application Status标明为FAILED,并将关闭SparkContext。其实,启动Executeors是通过ExecutorRunnable实现的,而ExecutorRunnable内部是启动CoarseGrainedExecutorBackend的。

9、最后,Task将在CoarseGrainedExecutorBackend里面运行,然后运行状况会通过Akka通知CoarseGrainedScheduler,直到作业运行完成。

你可能感兴趣的:(大数据,spark,scala,big,data,spark入门到精通,spark理解)