3 wes测序质量的控制

原视频6:测序质量的控制
首先建立文件夹

$ cd ~/project/wes/
$ mkdir {raw,clean,align,mutation,qc}

这部分包括fastqc和multiqc两个软件查看测序质量,以及使用trim_galore软件进行过滤低质量reads和去除接头。

1 QC

1.1 fastqc

没有原视频中文件,我用了下载的三个文件做例子。乳腺癌的组织样本。所以原视频中命令我也用不上,但是还是列出来

find /public/project/wes/raw_data -name *.gz|grep -v '\._'|xargs fastqc -t 10 -o ./

想知道为什么要-v ._,去看原视频中的文件命名。
我的文件没那么复杂,可以下面这样

$ find *.gz|xargs fastqc -t 20

-t 20 一次运行20个文件。

如果你有很多很多文件,参考我这篇批量对多个测序文件进行fastqc.

1.2 multiqc

$ multiqc -n wes ./
......
[INFO   ]         multiqc : This is MultiQC v1.0.dev0
[INFO   ]         multiqc : Template    : default
[INFO   ]         multiqc : Searching './'
[INFO   ]          fastqc : Found 8 reports
[INFO   ]         multiqc : Report      : wes.html
[INFO   ]         multiqc : Data        : wes_data
[INFO   ]         multiqc : MultiQC complete

结果如下所示:


3 wes测序质量的控制_第1张图片
multiqc结果

3 wes测序质量的控制_第2张图片
Per Sequence Quality Scores
3 wes测序质量的控制_第3张图片
接头

以上结果发现,质量可以但是需要去接头

2 trim-galore 过滤低质量reads和去接头

Trim Galore! is a wrapper script to automate quality and adapter trimming as well as quality control

#安装
conda install -c bioconda trim-galore 
ls /path/to/your/directory/*_1.fastq.gz >1
ls /path/to/your/directory/*_2.fastq.gz >2
paste 1 2 > config

也可以用
ls|grep >
打开qc.sh,写入以下内容

source activate wes
bin_trim_galore=trim_galore
dir='/mnt/f/kelly/bioTree/server/wesproject/raw_data'
cat config |while read id
do
         arr=(${id})
         fq1=${arr[0]}
         fq2=${arr[1]}
nohup $bin_trim_galore -q 25 --phred33 --length 36 -e 0.1 --stringency 3 --paired -o $dir $fq1 $fq2 &
done

运行上面脚本bash qc.sh就可以了。
可以看到后台正在运行

kelly@DESKTOP-MRA1M1F:~$ ps -ef
UID        PID  PPID  C STIME TTY          TIME CMD
root         1     0  0 17:06 ?        00:00:00 /init
kelly        2     1  0 17:06 tty1     00:00:01 -bash
kelly      527     1  5 22:46 tty1     00:00:27 perl /home/kelly/miniconda3/bin/trim_galore -q 25 --phred33 --length 36
kelly      528     1  5 22:46 tty1     00:00:30 perl /home/kelly/miniconda3/bin/trim_galore -q 25 --phred33 --length 36
kelly      529     1  5 22:46 tty1     00:00:29 perl /home/kelly/miniconda3/bin/trim_galore -q 25 --phred33 --length 36
kelly      530     1  5 22:46 tty1     00:00:26 perl /home/kelly/miniconda3/bin/trim_galore -q 25 --phred33 --length 36

运行时间大概4h,生成以下几个文件

├── [  88]  1
├── [  88]  2
├── [ 176]  config
├── [ 50K]  nohup.out
├── [2.2G]  SRR7696207_1.fastq.gz
├── [4.8K]  SRR7696207_1.fastq.gz_trimming_report.txt
├── [2.1G]  SRR7696207_1_val_1.fq.gz
├── [2.4G]  SRR7696207_2.fastq.gz
├── [5.0K]  SRR7696207_2.fastq.gz_trimming_report.txt
├── [2.3G]  SRR7696207_2_val_2.fq.gz
├── [1.9G]  SRR8517853_1.fastq.gz
├── [4.8K]  SRR8517853_1.fastq.gz_trimming_report.txt
├── [1.8G]  SRR8517853_1_val_1.fq.gz
├── [2.1G]  SRR8517853_2.fastq.gz
├── [5.0K]  SRR8517853_2.fastq.gz_trimming_report.txt
├── [2.0G]  SRR8517853_2_val_2.fq.gz
├── [2.3G]  SRR8517854_1.fastq.gz
├── [4.8K]  SRR8517854_1.fastq.gz_trimming_report.txt
├── [2.2G]  SRR8517854_1_val_1.fq.gz
├── [2.6G]  SRR8517854_2.fastq.gz
├── [5.1K]  SRR8517854_2.fastq.gz_trimming_report.txt
├── [2.4G]  SRR8517854_2_val_2.fq.gz
├── [4.1G]  SRR8517856_1.fastq.gz
├── [4.9K]  SRR8517856_1.fastq.gz_trimming_report.txt
├── [4.0G]  SRR8517856_1_val_1.fq.gz
├── [4.5G]  SRR8517856_2.fastq.gz
├── [5.1K]  SRR8517856_2.fastq.gz_trimming_report.txt
├── [4.2G]  SRR8517856_2_val_2.fq.gz
└── [ 305]  trim

可见,各小了大概0.1G。
其中,txt中的信息如下

SUMMARISING RUN PARAMETERS
==========================
Input filename: SRR7696207_1.fastq.gz
Trimming mode: paired-end
Trim Galore version: 0.6.2
Cutadapt version: 1.18
Number of cores used for trimming: 1
Quality Phred score cutoff: 25
Quality encoding type selected: ASCII+33
Adapter sequence: 'AGATCGGAAGAGC' (Illumina TruSeq, Sanger iPCR; auto-detected)
Maximum trimming error rate: 0.1 (default)
Minimum required adapter overlap (stringency): 3 bp
Minimum required sequence length for both reads before a sequence pair gets removed: 36 bp
Output file will be GZIP compressed


This is cutadapt 1.18 with Python 2.7.15
Command line parameters: -j 1 -e 0.1 -q 25 -O 3 -a AGATCGGAAGAGC SRR7696207_1.fastq.gz
Processing reads on 1 core in single-end mode ...
Finished in 1011.58 s (36 us/read; 1.65 M reads/minute).

=== Summary ===

Total reads processed:              27,850,979
Reads with adapters:                 9,452,510 (33.9%)
Reads written (passing filters):    27,850,979 (100.0%)

Total basepairs processed: 4,177,646,850 bp
Quality-trimmed:              21,999,885 bp (0.5%)
Total written (filtered):  3,930,084,164 bp (94.1%)

=== Adapter 1 ===

Sequence: AGATCGGAAGAGC; Type: regular 3'; Length: 13; Trimmed: 9452510 times.
No. of allowed errors:
0-9 bp: 0; 10-13 bp: 1

Bases preceding removed adapters:
  A: 21.7%
  C: 25.2%
  G: 28.1%
  T: 24.9%
  none/other: 0.0%

Overview of removed sequences
length  count   expect  max.err error counts
3       619264  435171.5        0       619264
4       291812  108792.9        0       291812
5       236788  27198.2 0       236788
6       226036  6799.6  0       226036
7       217969  1699.9  0       217969
8       214073  425.0   0       214073
9       230269  106.2   0       229591 678
10      216909  26.6    1       209213 7696
11      223835  6.6     1       214662 9173
12      219837  1.7     1       210062 9775
13      219106  0.4     1       209421 9685
14      223045  0.4     1       212324 10721
15      218505  0.4     1       208196 10309
16      224812  0.4     1       213584 11228
17      228422  0.4     1       216425 11997
18      214056  0.4     1       204368 9688
19      216385  0.4     1       206368 10017
20      207262  0.4     1       198505 8757
21      220284  0.4     1       209515 10769
22      207937  0.4     1       198723 9214
23      203136  0.4     1       194604 8532
24      208015  0.4     1       198522 9493
25      200567  0.4     1       191904 8663
26      201338  0.4     1       192675 8663
......

后面如果想快速运行流程,可以把测序数据取前N行,那么请看
3_0_4 要理解并会用的几个脚本
如果就想运行所有数据,请到
4 比对到参考基因组输出bam文件

你可能感兴趣的:(3 wes测序质量的控制)