【机器学习基础】机器学习和深度学习的练习数据

0.导语

初学者学习机器学习和深度学习的时候,经常会找不到练习的数据,本文提供了获取数据的一些方法。

一、scikit-learn自带数据集

Scikit-learn内置了很多可以用于机器学习的数据,可以用两行代码就可以使用这些数据。

一、自带数据集

自带的小的数据集为:sklearn.datasets.load_

load_boston Boston房屋价格 回归 506*13
fetch_california_housing 加州住房 回归 20640*9
load_diabetes 糖尿病 回归 442*10
load_digits 手写字 分类 1797*64
load_breast_cancer 乳腺癌 分类、聚类 (357+212)*30
load_iris 鸢尾花 分类、聚类 (50*3)*4
load_wine 葡萄酒 分类 (59+71+48)*13
load_linnerud 体能训练 多分类 20

怎么用:

数据集的信息关键字:

  • DESCR:

    数据集的描述信息

  • data:

    内部数据(即:X)

  • feature_names:

    数据字段名

  • target:

    数据标签(即:y)

  • target_names:

    标签字段名(回归数据集无此项) 


使用方法(以load_iris为例)

数据介绍:

  • 一般用于做分类测试

  • 有150个数据集,共分为3类,每类50个样本。每个样本有4个特征。

  • 每条记录都有 4 项特征:包含4个特征(Sepal.Length(花萼长度)、Sepal.Width(花萼宽度)、Petal.Length(花瓣长度)、Petal.Width(花瓣宽度)),特征值都为正浮点数,单位为厘米。

  • 可以通过这4个特征预测鸢尾花卉属于(iris-setosa(山鸢尾), iris-versicolour(杂色鸢尾), iris-virginica(维吉尼亚鸢尾))中的哪一品种。

第一步:

导入数据

from sklearn.datasets import load_iris
iris = load_iris()
第二步:

定义X和y
X, y = iris.data, iris.target
此外,可以看下数据的维度:

X.shape,y.shape
输出为:

((150, 4), (150,))查看特征名:
iris.feature_names
输出为:['sepal length (cm)',
 'sepal width (cm)',
 'petal length (cm)',
 'petal width (cm)']查看标签名:
iris.target_names

输出为:

array(['setosa', 'versicolor', 'virginica'], dtype='

划分训练集和测试集:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

这样就把训练集和测试集按照3比1划分了,接下来就可以用机器学习算法进行训练和测试了。

小技巧:将数据转换为Dataframe格式(两种方法都可以):

import pandas as pd
df_X = pd.DataFrame(iris.data, columns=iris.feature_names)
#这个是X
df_y = pd.DataFrame(iris.target, columns=["target"])
#这个是y
df=pd.concat([df_X,df2],axis=1)#横向合并
df.head()

或者:

import numpy as np
import pandas as pd
col_names = iris['feature_names'] + ['target']
df = pd.DataFrame(data= np.c_[iris['data'], iris['target']], columns=col_names)
df.head()

输出结果一致:

二、可在线下载的数据集(需要下载)

下载的数据集为:sklearn.datasets.fetch_

这类数据需要在线下载,有点慢

fetch_20newsgroups

用于文本分类、文本挖据和信息检索研究的国际标准数据集之一。数据集收集了大约20,000左右的新闻组文档,均匀分为20个不同主题的新闻组集合。返回一个可以被文本特征提取器

fetch_20newsgroups_vectorized

这是上面这个文本数据的向量化后的数据,返回一个已提取特征的文本序列,即不需要使用特征提取器

fetch_california_housing

加利福尼亚的房价数据,总计20640个样本,每个样本8个属性表示,以及房价作为target,所有属性值均为number,详情可调用fetch_california_housing()['DESCR']了解每个属性的具体含义;

fetch_covtype

森林植被类型,总计581012个样本,每个样本由54个维度表示(12个属性,其中2个分别是onehot4维和onehot40维),以及target表示植被类型1-7,所有属性值均为number,详情可调用fetch_covtype()['DESCR']了解每个属性的具体含义

fetch_kddcup99

KDD竞赛在1999年举行时采用的数据集,KDD99数据集仍然是网络入侵检测领域的事实Benckmark,为基于计算智能的网络入侵检测研究奠定基础,包含41项特征

fetch_lfw_pairs

该任务称为人脸验证:给定一对两张图片,二分类器必须预测这两个图片是否来自同一个人。

fetch_lfw_people

打好标签的人脸数据集

fetch_mldata

从 mldata.org 中下载数据集

fetch_olivetti_faces

Olivetti 脸部图片数据集

fetch_rcv1

路透社新闻语聊数据集

fetch_species_distributions

物种分布数据集

使用方法与自带数据集一致,只是多了下载过程(示例:fetch_20newsgroups)

from sklearn.datasets import fetch_20newsgroups
news = fetch_20newsgroups(subset='all') #本次使用的数据需要到互联网上下载
from sklearn.model_selection import train_test_split
#对数据训练集和测试件进行划分
X_train, X_test, y_train, y_test = train_test_split(
    news.data, news.target, test_size=0.25, random_state=33)


三、生成数据集

可以用来分类任务,可以用来回归任务,可以用来聚类任务,用于流形学习的,用于因子分解任务的,用于分类任务和聚类任务的:这些函数产生样本特征向量矩阵以及对应的类别标签集合

  • make_blobs:多类单标签数据集,为每个类分配一个或多个正态分布的点集

  • make_classification:多类单标签数据集,为每个类分配一个或多个正态分布的点集,提供了为数据添加噪声的方式,包括维度相关性,无效特征以及冗余特征等

  • make_gaussian-quantiles:将一个单高斯分布的点集划分为两个数量均等的点集,作为两类

  • make_hastie-10-2:产生一个相似的二元分类数据集,有10个维度

  • make_circle和make_moons:产生二维二元分类数据集来测试某些算法的性能,可以为数据集添加噪声,可以为二元分类器产生一些球形判决界面的数据

举例:

import matplotlib.pyplot as plt
from sklearn.datasets import make_moons
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
plt.title('make_moons function example')
plt.scatter(X[:,0],X[:,1],marker='o',c=y)
plt.show()

深度学习数据集

MS-COCO

COCO是一个可用于object detection, segmentation and caption的大型数据集。

http://cocodataset.org/#home

ImageNet

图像总数约1,500,000; 每个都有多个边界框和相应的类标签。

大小:约150GB

http://www.image-net.org

Yelp Reviews

它由数百万用户评论、商业类型和来自多个大型城市的超过20万张照片组成。这在全球都是一个非常常用的NLP挑战级数据集。

大小:2.66 GB JSON,2.9 GB SQL and 7.5 GB Photos(全部已压缩)

数量:5,200,000条评论,174,000条商业类型,20万张图片和11个大型城市

https://www.yelp.com/dataset

……待补充

其它数据集

kaggle:

https://www.kaggle.com

天池:

https://tianchi.aliyun.com/dataset

搜狗实验室:

http://www.sogou.com/labs/resource/list_pingce.php

DC竞赛:

https://www.pkbigdata.com/common/cmptIndex.html

DF竞赛:

https://www.datafountain.cn/datasets

Google数据集

[需要科学上网]

https://toolbox.google.com/datasetsearch

科赛网

https://www.kesci.com/home/dataset

微软数据集

https://msropendata.com/

……待补充

总结

本文为机器学习初学者提供了使用scikit-learn内置数据的方法,用两行代码就可以使用这些数据,可以进行大部分的机器学习实验了。

参考

https://scikit-learn.org/stable/datasets/index.html

https://blog.csdn.net/fendouaini/article/details/79871922


往期精彩回顾



适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
AI基础下载机器学习的数学基础专辑
获取一折本站知识星球优惠券,复制链接直接打开:
https://t.zsxq.com/y7uvZF6
本站qq群704220115。

加入微信群请扫码:

你可能感兴趣的:(聚类,机器学习,人工智能,python,数据挖掘)