本文作为学习笔记,文章内容来自“极客时间”专栏《Redis核心技术与实战》,如有侵权,请告知,必即时删除。
1、内存碎片的优化
在使用 Redis 时,我们经常会遇到这样一个问题:明明做了数据删除,数据量已经不大了,为什么使用 top 命令查看时,还会发现 Redis 占用了很多内存呢?实际上,这是因为,当数据删除后,Redis 释放的内存空间会由内存分配器管理,并不会立即返回给操作系统。所以,操作系统仍然会记录着给 Redis 分配了大量内存。
但是,这往往会伴随一个潜在的风险点:Redis 释放的内存空间可能并不是连续的,那么,这些不连续的内存空间很有可能处于一种闲置的状态。这就会导致一个问题:虽然有空闲空间,Redis 却无法用来保存数据,不仅会减少 Redis 能够实际保存的数据量,还会降低 Redis 运行机器的成本回报率。
虽然操作系统的剩余内存空间总量足够,但是,应用申请的是一块连续地址空间的 N 字节,但在剩余的内存空间中,没有大小为 N 字节的连续空间了,那么,这些剩余空间就是内存碎片。
1.1、内存碎片的形成原因
1.1.1、内因:内存分配器的分配策略
内存分配器一般是按固定大小来分配内存,而不是完全按照应用程序申请的内存空间大小给程序分配。Redis 可以使用 libc、jemalloc、tcmalloc 多种内存分配器来分配内存,默认使用 jemalloc。接下来,我就以 jemalloc 为例,来具体解释一下。其他分配器也存在类似的问题。
jemalloc 的分配策略之一,是按照一系列固定的大小划分内存空间,例如 8 字节、16 字节、32 字节、48 字节,…, 2KB、4KB、8KB 等。当程序申请的内存最接近某个固定值时,jemalloc 会给它分配相应大小的空间。例如,Redis 申请一个 20 字节的空间保存数据,jemalloc 就会分配 32 字节。
1.1.2、外因:键值对大小不一样和删改操作
Redis 通常作为共用的缓存系统或键值数据库对外提供服务,所以,不同业务应用的数据都可能保存在 Redis 中,这就会带来不同大小的键值对。这样一来,Redis 申请内存空间分配时,本身就会有大小不一的空间需求。这是第一个外因。
第二个外因是,这些键值对会被修改和删除,这会导致空间的扩容和释放。具体来说,一方面,如果修改后的键值对变大或变小了,就需要占用额外的空间或者释放不用的空间。另一方面,删除的键值对就不再需要内存空间了,此时,就会把空间释放出来,形成空闲空间。
1.2、如何判断是否由内存碎片
Redis 自身提供了 INFO 命令,可以用来查询内存使用的详细信息,命令如下:
INFO memory
# Memory
used_memory:1073741736
used_memory_human:1024.00M
used_memory_rss:1997159792
used_memory_rss_human:1.86G
…
mem_fragmentation_ratio:1.86
这里有一个 mem_fragmentation_ratio 的指标,它表示的就是 Redis 当前的内存碎片率。那么,这个碎片率是怎么计算的呢?其实,就是上面的命令中的两个指标 used_memory_rss 和 used_memory 相除的结果。used_memory_rss是操作系统实际分配给 Redis 的物理内存空间,里面就包含了碎片;而used_memory是 Redis 为了保存数据实际申请使用的空间。
那么,知道了这个指标,我们该如何使用呢?在这儿,我提供一些经验阈值:
- mem_fragmentation_ratio 大于 1 但小于 1.5。这种情况是合理的。这是因为,刚才我介绍的那些因素是难以避免的。毕竟,内因的内存分配器是一定要使用的,分配策略都是通用的,不会轻易修改;而外因由 Redis 负载决定,也无法限制。所以,存在内存碎片也是正常的。
- mem_fragmentation_ratio 大于 1.5。这表明内存碎片率已经超过了 50%。一般情况下,这个时候,我们就需要采取一些措施来降低内存碎片率了。
1.3、清理内存碎片
当 Redis 发生内存碎片后,一个“简单粗暴”的方法就是重启 Redis 实例。当然,这并不是一个“优雅”的方法。从 4.0-RC3 版本以后,Redis 自身提供了一种内存碎片自动清理的方法,我们先来看这个方法的基本机制。内存碎片清理,简单来说,就是“搬家让位,合并空间”。
当有数据把一块连续的内存空间分割成好几块不连续的空间时,操作系统就会把数据拷贝到别处。此时,数据拷贝需要能把这些数据原来占用的空间都空出来,把原本不连续的内存空间变成连续的空间。否则,如果数据拷贝后,并没有形成连续的内存空间,这就不能算是清理了。
不过,需要注意的是:碎片清理是在Redis主线程中进行的,所以在碎片清理时,会阻塞主线程,导致 Redis 无法及时处理请求,性能降低。
Redis 专门为自动内存碎片清理功机制设置了参数,我们可以通过设置参数,来控制碎片清理的开始和结束时机,以及占用的 CPU 比例,从而减少碎片清理对 Redis 本身请求处理的性能影响。
首先,Redis 需要启用自动内存碎片清理,可以把 activedefrag 配置项设置为 yes,命令如下:
config set activedefrag yes
具体什么时候清理,会受到下面这两个参数的控制。这两个参数分别设置了触发内存清理的一个条件,如果同时满足这两个条件,就开始清理。在清理的过程中,只要有一个条件不满足了,就停止自动清理。
- active-defrag-ignore-bytes 100mb:表示内存碎片的字节数达到 100MB 时,开始清理;
- active-defrag-threshold-lower 10:表示内存碎片空间占操作系统分配给 Redis 的总空间比例达到 10% 时,开始清理。
自动内存碎片清理功能在执行时,还会监控清理操作占用的 CPU 时间,而且还设置了两个参数,分别用于控制清理操作占用的 CPU 时间比例的上、下限,既保证清理工作能正常进行,又避免了降低 Redis 性能。这两个参数具体如下:
- active-defrag-cycle-min 25: 表示自动清理过程所用 CPU 时间的比例不低于 25%,保证清理能正常开展;
- active-defrag-cycle-max 75:表示自动清理过程所用 CPU 时间的比例不高于 75%,一旦超过,就停止清理,从而避免在清理时,大量的内存拷贝阻塞 Redis,导致响应延迟升高。
2、缓冲区溢出优化
缓冲区的功能其实很简单,主要就是用一块内存空间来暂时存放命令数据,以免出现因为数据和命令的处理速度慢于发送速度而导致的数据丢失和性能问题。但因为缓冲区的内存空间有限,如果往里面写入数据的速度持续地大于从里面读取数据的速度,就会导致缓冲区需要越来越多的内存来暂存数据。当缓冲区占用的内存超出了设定的上限阈值时,就会出现缓冲区溢出。
如果发生了溢出,就会丢数据了。那是不是不给缓冲区的大小设置上限,就可以了呢?显然不是,随着累积的数据越来越多,缓冲区占用内存空间越来越大,一旦耗尽了 Redis 实例所在机器的可用内存,就会导致 Redis 实例崩溃。
2.1、客户端输入、输出缓冲区
为了避免客户端和服务器端的请求发送和处理速度不匹配,服务器端给每个连接的客户端都设置了一个输入缓冲区和输出缓冲区,我们称之为客户端输入缓冲区和输出缓冲区。输入缓冲区会先把客户端发送过来的命令暂存起来,Redis 主线程再从输入缓冲区中读取命令,进行处理。当 Redis 主线程处理完数据后,会把结果写入到输出缓冲区,再通过输出缓冲区返回给客户端,如下图所示:
2.1.1、如何应对输入缓冲区溢出
输入缓冲区就是用来暂存客户端发送的请求命令的,所以可能导致溢出的情况主要是下面两种:
- 写入了 bigkey,比如一下子写入了多个百万级别的集合类型数据;
- 服务器端处理请求的速度过慢,例如,Redis 主线程出现了间歇性阻塞,无法及时处理正常发送的请求,导致客户端发送的请求在缓冲区越积越多。
要查看和服务器端相连的每个客户端对输入缓冲区的使用情况,我们可以使用 CLIENT LIST 命令:
CLIENT LIST
id=5 addr=127.0.0.1:50487 fd=9 name= age=4 idle=0 flags=N db=0 sub=0 psub=0 multi=-1 qbuf=26 qbuf-free=32742 obl=0 oll=0 omem=0 events=r cmd=client
输出结果中:
- addr 会显示不同客户端的 IP 和端口号。
- cmd,表示客户端最新执行的命令。这个例子中执行的是 CLIENT 命令。
- qbuf,表示输入缓冲区已经使用的大小。这个例子中的 CLIENT 命令已使用了 26 字节大小的缓冲区。
- qbuf-free,表示输入缓冲区尚未使用的大小。这个例子中的 CLIENT 命令还可以使用 32742 字节的缓冲区。qbuf 和 qbuf-free 的总和就是,Redis 服务器端当前为已连接的这个客户端分配的缓冲区总大小。这个例子中总共分配了 26 + 32742 = 32768 字节,也就是 32KB 的缓冲区。
有了 CLIENT LIST 命令,我们就可以通过输出结果来判断客户端输入缓冲区的内存占用情况了。如果 qbuf 很大,而同时 qbuf-free 很小,就要引起注意了,因为这时候输入缓冲区已经占用了很多内存,而且没有什么空闲空间了。此时,客户端再写入大量命令的话,就会引起客户端输入缓冲区溢出,Redis 的处理办法就是把客户端连接关闭,结果就是业务程序无法进行数据存取了。
Redis 并没有提供参数让我们调节客户端输入缓冲区的大小。如果要避免输入缓冲区溢出,那我们就只能从数据命令的发送和处理速度入手,也就是前面提到的避免客户端写入 bigkey,以及避免 Redis 主线程阻塞。
2.1.2、如何应对输出缓冲区溢出
Redis 的输出缓冲区暂存的是 Redis 主线程要返回给客户端的数据。一般来说,主线程返回给客户端的数据,既有简单且大小固定的 OK 响应(例如,执行 SET 命令)或报错信息,也有大小不固定的、包含具体数据的执行结果(例如,执行 HGET 命令)。
因此,Redis 为每个客户端设置的输出缓冲区也包括两部分:一部分,是一个大小为 16KB 的固定缓冲空间,用来暂存 OK 响应和出错信息;另一部分,是一个可以动态增加的缓冲空间,用来暂存大小可变的响应结果。那什么情况下会发生输出缓冲区溢出呢? 我为你总结了三种:
- 服务器端返回 bigkey 的大量结果;
- 执行了 MONITOR 命令;
- 缓冲区大小设置得不合理。
其中,bigkey 原本就会占用大量的内存空间,所以服务器端返回的结果包含 bigkey,必然会影响输出缓冲区。MONITOR 命令是用来监测 Redis 执行的。执行这个命令之后,就会持续输出监测到的各个命令操作,如下所示:
MONITOR
OK
1600617456.437129 [0 127.0.0.1:50487] "COMMAND"
1600617477.289667 [0 127.0.0.1:50487] "info" "memory"
MONITOR 的输出结果会持续占用输出缓冲区,并越占越多,最后的结果就是发生溢出。MONITOR 命令主要用在调试环境中,不要在线上生产环境中持续使用 MONITOR。接下来,我们看下输出缓冲区大小设置的问题。和输入缓冲区不同,我们可以通过 client-output-buffer-limit 配置项,来设置缓冲区的大小。具体设置的内容包括两方面:
- 设置缓冲区大小的上限阈值;
- 设置输出缓冲区持续写入数据的数量上限阈值,和持续写入数据的时间的上限阈值。
当我们给普通客户端设置缓冲区大小时,通常可以在 Redis 配置文件中进行这样的设置:
client-output-buffer-limit normal 0 0 0
其中,normal 表示当前设置的是普通客户端,第 1 个 0 设置的是缓冲区大小限制,第 2 个 0 和第 3 个 0 分别表示缓冲区持续写入量限制和持续写入时间限制。
对于普通客户端来说,它每发送完一个请求,会等到请求结果返回后,再发送下一个请求,这种发送方式称为阻塞式发送。在这种情况下,如果不是读取体量特别大的 bigkey,服务器端的输出缓冲区一般不会被阻塞的。所以,我们通常把普通客户端的缓冲区大小限制,以及持续写入量限制、持续写入时间限制都设置为 0,也就是不做限制。
对于订阅客户端来说,一旦订阅的 Redis 频道有消息了,服务器端都会通过输出缓冲区把消息发给客户端。所以,订阅客户端和服务器间的消息发送方式,不属于阻塞式发送。不过,如果频道消息较多的话,也会占用较多的输出缓冲区空间。
client-output-buffer-limit pubsub 8mb 2mb 60
pubsub 参数表示当前是对订阅客户端进行设置;8mb 表示输出缓冲区的大小上限为 8MB,一旦实际占用的缓冲区大小要超过 8MB,服务器端就会直接关闭客户端的连接;2mb 和 60 表示,如果连续 60 秒内对输出缓冲区的写入量超过 2MB 的话,服务器端也会关闭客户端连接。
好了,我们来总结下如何应对输出缓冲区溢出:
- 避免 bigkey 操作返回大量数据结果;
- 避免在线上环境中持续使用 MONITOR 命令;
- 使用 client-output-buffer-limit 设置合理的缓冲区大小上限,或是缓冲区连续写入时间和写入量上限。
2.2、主从集群中的缓冲区
2.2.1、复制缓冲区的溢出问题
在全量复制过程中,主节点在向从节点传输 RDB 文件的同时,会继续接收客户端发送的写命令请求。这些写命令就会先保存在复制缓冲区中,等 RDB 文件传输完成后,再发送给从节点去执行。主节点上会为每个从节点都维护一个复制缓冲区,来保证主从节点间的数据同步。
所以,如果在全量复制时,从节点接收和加载 RDB 较慢,同时主节点接收到了大量的写命令,写命令在复制缓冲区中就会越积越多,最终导致溢出。其实,主节点上的复制缓冲区,本质上也是一个用于和从节点连接的客户端(我们称之为从节点客户端),使用的输出缓冲区。复制缓冲区一旦发生溢出,主节点也会直接关闭和从节点进行复制操作的连接,导致全量复制失败。
一方面,我们可以控制主节点保存的数据量大小。按通常的使用经验,我们会把主节点的数据量控制在 2~4GB,这样可以让全量同步执行得更快些,避免复制缓冲区累积过多命令。另一方面,我们可以使用 client-output-buffer-limit 配置项,来设置合理的复制缓冲区大小。设置的依据,就是主节点的数据量大小、主节点的写负载压力和主节点本身的内存大小。
在主节点执行如下命令:
config set client-output-buffer-limit slave 512mb 128mb 60
其中,slave 参数表明该配置项是针对复制缓冲区的。512mb 代表将缓冲区大小的上限设置为 512MB;128mb 和 60 代表的设置是,如果连续 60 秒内的写入量超过 128MB 的话,也会触发缓冲区溢出。在实际应用中设置复制缓冲区的大小时,可以根据写命令数据的大小和应用的实际负载情况(也就是写命令速率),来粗略估计缓冲区中会累积的写命令数据量;然后,再和所设置的复制缓冲区大小进行比较,判断设置的缓冲区大小是否足够支撑累积的写命令数据量。
为了避免复制缓冲区累积过多命令造成溢出,引发全量复制失败,我们可以控制主节点保存的数据量大小,并设置合理的复制缓冲区大小。同时,我们需要控制从节点的数量,来避免主节点中复制缓冲区占用过多内存的问题。
2.2.2、复制积压缓冲区的溢出问题
主节点在把接收到的写命令同步给从节点时,同时会把这些写命令写入复制积压缓冲区。一旦从节点发生网络闪断,再次和主节点恢复连接后,从节点就会从复制积压缓冲区中,读取断连期间主节点接收到的写命令,进而进行增量同步,如下图所示:
首先,复制积压缓冲区是一个大小有限的环形缓冲区。当主节点把复制积压缓冲区写满后,会覆盖缓冲区中的旧命令数据。如果从节点还没有同步这些旧命令数据,就会造成主从节点间重新开始执行全量复制。其次,为了应对复制积压缓冲区的溢出问题,我们可以调整复制积压缓冲区的大小,也就是设置 repl_backlog_size 这个参数的值。
缓冲空间的计算公式是:缓冲空间大小 = 主库写入命令速度 * 操作大小 - 主从库间网络传输命令速度 * 操作大小。在实际应用中,考虑到可能存在一些突发的请求压力,我们通常需要把这个缓冲空间扩大一倍,即 repl_backlog_size = 缓冲空间大小 * 2,这也就是 repl_backlog_size 的最终值。
举个例子,如果主库每秒写入 2000 个操作,每个操作的大小为 2KB,网络每秒能传输 1000 个操作,那么,有 1000 个操作需要缓冲起来,这就至少需要 2MB 的缓冲空间。否则,新写的命令就会覆盖掉旧操作了。为了应对可能的突发压力,我们最终把 repl_backlog_size 设为 4MB。
不过,如果并发请求量非常大,连两倍的缓冲空间都存不下新操作请求的话,此时,主从库数据仍然可能不一致。可以考虑使用切片集群来分担单个主库的请求压力。