CF1634 F. Fibonacci Additions

CF1634 F. Fibonacci Additions_第1张图片
题意: q q q次操作,每次给数组 A A A或者 B B B [ l , r ] [l,r] [l,r]位置加上一个斐波那契数列,问每次操作之后 A B AB AB数组是否相同
考虑斐波那契的生成函数
f ( x ) = 1 + 1 x + 2 x 2 + . . . + f i b i − 1 x i + . . . = ∑ i = 0 f i b i + 1 x i x f ( x ) = ∑ i = 1 f i b i x i , x 2 f ( x ) = ∑ i = 2 f i b i − 1 x i f ( x ) − x f ( x ) − x 2 f ( x ) = 1 f ( x ) = 1 1 − x − x 2 f(x)=1+1x+2x^2+...+fib_{i-1}x^i+...=\sum_{i=0}fib_{i+1}x^i\\ xf(x)=\sum_{i=1}fib_{i}x^i,x^2f(x)=\sum_{i=2}fib_{i-1}x^i\\ f(x)-xf(x)-x^2f(x)=1\\ f(x)=\frac 1 {1-x-x^2} f(x)=1+1x+2x2+...+fibi1xi+...=i=0fibi+1xixf(x)=i=1fibixi,x2f(x)=i=2fibi1xif(x)xf(x)x2f(x)=1f(x)=1xx21
如果把 A , B A,B A,B看做两个多项式
A ( x ) = ∑ i = 1 n a i x i B ( x ) = ∑ i = 1 n b i x i A(x)=\sum_{i=1}^{n}a_ix^i\\ B(x)=\sum_{i=1}^{n}b_ix^i A(x)=i=1naixiB(x)=i=1nbixi
那么在 A A A数组 [ l , r ] [l,r] [l,r]位置加上一个斐波那契数列就相当于
A ( x ) + = x l f ( x ) − f i b r − l + 2 x r f ( x ) − f i b r − l + 1 x r + 1 f ( x )    ⟺    A ( x ) + = x l 1 1 − x − x 2 − f i b r − l + 2 x r 1 1 − x − x 2 − f i b r − l + 1 x r + 1 1 1 − x − x 2 A(x)+=x^lf(x)-fib_{r-l+2}x^rf(x)-fib_{r-l+1}x^{r+1}f(x)\\ \iff A(x)+=x^l\frac 1 {1-x-x^2}-fib_{r-l+2}x^r\frac 1 {1-x-x^2}-fib_{r-l+1}x^{r+1}\frac 1 {1-x-x^2} A(x)+=xlf(x)fibrl+2xrf(x)fibrl+1xr+1f(x)A(x)+=xl1xx21fibrl+2xr1xx21fibrl+1xr+11xx21
两边同乘 ( 1 − x − x 2 ) (1-x-x^2) (1xx2)
   ⟺    ( 1 − x − x 2 ) A ( x ) + = x l − f i b r − l + 2 x r − f i b r − l + 1 x r + 1 \iff (1-x-x^2)A(x)+=x^l-fib_{r-l+2}x^r-fib_{r-l+1}x^{r+1} (1xx2)A(x)+=xlfibrl+2xrfibrl+1xr+1
每次修改复杂度就降为 O ( 1 ) O(1) O(1)
然后考虑 ( 1 − x − x 2 ) A ( x ) (1-x-x^2)A(x) (1xx2)A(x)的实际意义,即构造一个辅助数组 D D D
D i = A i − A i − 1 − A i − 2 D_i=A_i-A_{i-1}-A_{i-2} Di=AiAi1Ai2

#include
#define ll long long
using namespace std;
int main()
{
	int n,q,mod;
	scanf("%d%d%d",&n,&q,&mod);
	vector<int>a(n+1),b(n+1);
	for(int i=1;i<=n;i++)scanf("%d",&a[i]);
	for(int i=1;i<=n;i++)scanf("%d",&b[i]);
	for(int i=n;i>=2;i--)
	{
		a[i]-=a[i-1]+a[i-2];
		a[i]=(a[i]%mod+mod)%mod;
	}
	for(int i=n;i>=2;i--)
	{
		b[i]-=b[i-1]+b[i-2];
		b[i]=(b[i]%mod+mod)%mod;
	}
	int cnt=0;
	for(int i=1;i<=n;i++)cnt+=(a[i]!=b[i]);
	vector<int>fib(n+5);
	fib[1]=1%mod;
	fib[2]=1%mod;
	for(int i=3;i<=n;i++)fib[i]=(fib[i-1]+fib[i-2])%mod;
	// printf("cnt=%d\n",cnt);
	// for(int j=1;j<=n;j++)printf("%d%c",a[j]," \n"[j==n]);
	// for(int j=1;j<=n;j++)printf("%d%c",b[j]," \n"[j==n]);
	for(int i=1;i<=q;i++)
	{
		char c[2];
		scanf("%s",c);
		int l,r;
		scanf("%d%d",&l,&r);
		auto add=[&](int id,int pos,int add)
		{
			// printf("id=%d pos=%d add=%d\n",id,pos,add);
			if(pos>n)return;
			if(id==1)
			{
				cnt-=(a[pos]!=b[pos]);
				a[pos]+=add;
				a[pos]=(a[pos]%mod+mod)%mod;
				cnt+=(a[pos]!=b[pos]);
			}
			else
			{
				cnt-=(a[pos]!=b[pos]);
				b[pos]+=add;
				b[pos]=(b[pos]%mod+mod)%mod;
				cnt+=(a[pos]!=b[pos]);
			}
		};
		if(c[0]=='A')
		{
			add(1,l,1);
			add(1,r+1,-fib[r-l+2]);
			add(1,r+2,-fib[r-l+1]);
		}
		else
		{
			add(2,l,1);
			add(2,r+1,-fib[r-l+2]);
			add(2,r+2,-fib[r-l+1]);
		}
		// printf("q=%d cnt=%d\n",i,cnt);
		// for(int j=1;j<=n;j++)printf("%d%c",a[j]," \n"[j==n]);
		// for(int j=1;j<=n;j++)printf("%d%c",b[j]," \n"[j==n]);
		if(cnt==0)printf("YES\n");
		else printf("NO\n");

	}	
    return  0;
}

你可能感兴趣的:(生成函数,斐波那契,算法,动态规划,概率论)