- 生成式AI技术对未来知识生产模式的颠覆性影响:跨学科案例分析
德宿
人工智能
引言随着人工智能技术的迅猛发展,生成式AI作为一种革命性技术正在深刻地改变人类知识生产和学术研究的范式。生成式AI不仅能够创建原创内容,还能模拟人类思维过程,处理和生成大量数据,从而在各个学科领域展现出广阔的应用前景。本研究报告旨在深入探讨生成式AI技术对未来知识生产模式的颠覆性影响,通过对比传统学术研究与AI辅助研究的范式差异,并选取医学、法学、文学、经济学和艺术学等五个典型领域进行深度案例分析
- 技术开发全流程管理:涵盖天线系统的仿真建模(HFSS/CST等)、原型设计、调试优化(网络分析仪/暗室测试)到量产导入(LDS工艺识别),需主导技术文档编写(设计规范/测试报告)。
百态老人
网络设计规范
以下是针对天线系统技术开发全流程管理的完整解析,涵盖仿真建模、原型设计、调试优化、量产导入及技术文档编写五大环节,结合行业实践与资料核心信息进行系统阐述:一、仿真建模(HFSS/CST)1.软件选择与算法差异HFSS:基于有限元法(FEM),擅长电小尺寸、窄带天线设计(如微带天线、滤波电路),可精确计算辐射方向图、增益、S参数等。其自适应网格技术确保高精度,但计算资源消耗大,不适于电大尺寸模型。C
- 云原生灰度方案对比:服务网格灰度(Istio ) 与 K8s Ingress 灰度(Nginx Ingress )
大手你不懂
微服务-云原生JavaJava项目实战云原生istiokubernetes微服务
服务网格灰度与KubernetesIngress灰度是云原生环境下两种主流的灰度发布方案,它们在架构定位、实现方式和适用场景上存在显著差异。以下从多个维度对比分析,并给出选型建议:一、核心区别对比维度服务网格灰度(以Istio为例)K8sIngress灰度(以NginxIngress为例)架构层级网络层(L7),工作在服务间通信层面边缘网关层,工作在集群入口处流量控制范围服务间的全链路流量集群外部
- 量化价值投资入门:Fama-French三因子模型详解与实战应用
量化价值投资入门到精通
ai
量化价值投资入门:Fama-French三因子模型详解与实战应用关键词:量化投资、Fama-French三因子模型、价值投资、因子投资、资产定价、Python实现、投资组合管理摘要:本文深入解析Fama-French三因子模型的理论基础、数学原理和实际应用。作为现代金融学最重要的资产定价模型之一,三因子模型通过市场因子、规模因子和价值因子解释股票收益差异。我们将从模型起源开始,详细讲解其数学表达和
- MongoDB 与关系型数据库的核心区别(面试向详解)
真IT布道者
数据库mongodb面试
一、数据模型差异1.1结构化vs半结构化关系型数据库:严格遵循二维表结构,需要预定义Schema(字段名、数据类型、约束等)CREATETABLEusers(idINTPRIMARYKEY,nameVARCHAR(50)NOTNULL,ageINTCHECK(age>0)MongoDB:采用BSON文档模型(类似JSON),支持动态Schema//同一个集合中可以存在不同结构的文档db.users
- 嵌入式硬件与应用篇---寄存器GPIO控制
在ARM架构中,通过32位寄存器控制GPIO(通用输入输出)的核心步骤和方法可分为以下几个关键环节,结合不同芯片的实现差异,具体操作需参考对应的数据手册:一、GPIO控制的核心步骤1.使能GPIO时钟必要性:多数ARM芯片的GPIO外设默认处于时钟关闭状态,需先通过时钟控制寄存器激活。示例:STM32F103(Cortex-M3):使用RCC_APB2PeriphClockCmd函数使能对应GPI
- MySQL与SQL Server的差异及测试手法
ke0hly
web安全安全网络安全
SQL注入漏洞分析:MySQL与SQLServer的差异及测试手法引言如果系统使用的是SQLServer数据库,则可以实现写入Webshell,而MySQL则不行。本文将深入探讨这两种数据库在SQL注入场景下的差异,以及SQLServer如何利用SQL注入写入Webshell,并介绍其他常见的SQL注入攻击手法。MySQL与SQLServer在SQL注入写入Webshell上的差异SQL注入的本质
- 随机化在临床试验中的应用与挑战
qq_34062333
临床试验统计学
一、随机化的核心目的1.1控制混杂偏倚1.1.1平衡预后因素确保已知/未知预后因素在组间分布均衡,避免基线不平衡影响结果。1.1.2避免选择偏倚防止研究者或患者主观选择分组,保障组间差异归因于干预。1.2保障统计推断有效性1.2.1满足独立性假设满足统计检验的独立性假设,使统计推断有效。1.2.2实现盲法基础为双盲实施提供先决条件,确保试验结果无偏。二、随机化类型与技术实现2.1简单随机化2.1.
- 可编程逻辑器件的演进与对比分析
cycf
FPGA之道fpga开发
可编程逻辑器件的演进与对比分析目录离散逻辑芯片与早期PLD的限制CPLD的诞生与结构特点FPGA的架构创新CPLD与FPGA的核心差异总结1.离散逻辑芯片与早期PLD的限制在还没有发明出可编程逻辑器件(PLD:ProgrammableLogicDevice)之前,设计师们只能使用一些专用的小芯片来搭建系统,这些小芯片被称为离散逻辑芯片。这些早期的PLD产品日渐不能满足人们的需求,于是新的可编程逻辑
- 【企业研发】ELK开发
flyair_China
djangopython后端
一、ElasticSearchElasticsearch作为当前最流行的全文检索引擎之一,在众多领域展现出强大的搜索和分析能力。1.1、全文检索与精准检索的差异Elasticsearch提供两种主要的查询方式:全文检索匹配检索(Full-textMatchQuery)和精准匹配检索(ExactMatchQuery),它们在处理查询词和索引数据时有显著区别。1.精准匹配检索(ExactMatchQu
- 【微服务】微服务技术开发的开发与设计规范(基于 Spring Cloud Alibaba)
binqian
微服务设计规范架构
一、基础架构规范目标:定义系统底层技术栈的选型、部署架构及核心组件配置标准,保障系统稳定性和扩展性。1.1技术栈选型约束层级技术组件版本要求说明基础环境JDK1.8统一JDK版本,避免因版本差异导致的兼容性问题SpringBoot2.7.x遵循LTS版本,兼容SpringCloudAlibaba2021.0.x及以上SpringCloudAlibaba2021.0.x与SpringBoot2.7.
- 【2024 CVPR-Backbone】RepViT: Revisiting Mobile CNN From ViT Perspective
无敌悦悦王
文献阅读cnn人工智能神经网络计算机视觉图像处理python深度学习
摘要近期,轻量级视觉Transformer(ViT)在资源受限的移动设备上表现出比轻量级卷积神经网络(CNN)更优异的性能和更低的延迟。研究人员已发现轻量级ViT与轻量级CNN之间存在许多结构关联,但二者在模块结构、宏观和微观设计上的显著架构差异尚未得到充分研究。本研究从ViT视角重新审视轻量级CNN的高效设计,并强调其在移动设备上的应用前景。具体而言,我们通过整合轻量级ViT的高效架构设计,逐步
- 【行云流水a】淘天联合爱橙开源强化学习训练框架ROLL OpenRL/openrl PPO-for-Beginners: 从零开始实现强化学习算法PPO 强化学习框架verl 港大等开源GoT-R1
行云流水AI笔记
开源算法
以下是DQN(DeepQ-Network)和PPO(ProximalPolicyOptimization)的全面对比流程图及文字解析。两者是强化学习的核心算法,但在设计理念、适用场景和实现机制上有显著差异:graphTDA[对比维度]-->B[算法类型]A-->C[策略表示]A-->D[动作空间]A-->E[学习机制]A-->F[探索方式]A-->G[稳定性]A-->H[样本效率]A-->I[关键
- n8n和dify有什么区别
小雷FansUnion
AI2025人工智能
n8nvsDify全面对比分析1.产品定位对比1.1核心定位差异维度n8nDify产品类型工作流自动化平台AI应用开发平台主要用途连接不同服务,实现业务自动化快速构建AI聊天机器人和应用目标用户业务人员、运营人员、开发者AI应用开发者、产品经理核心价值提升工作效率,减少重复劳动降低AI应用开发门槛1.2应用场景对比n8n应用场景:├──数据同步自动化│├──CRM与邮件系统同步│├──表格数据自动
- for...in 与 for...of的区别是啥?用错后果很严重
for…in与for…of循环详解在JavaScript中,for...in和for...of是两种常用的循环语句,但它们在使用场景和行为上有显著区别。下面我将详细解释它们的差异,并通过示例代码进行说明。核心区别对比表特性for...infor...of遍历目标对象的可枚举属性可迭代对象的值返回值类型键名(key)值(value)适用对象普通对象、数组(不推荐)数组、字符串、Map、Set、Nod
- v-if、display、visibility、opacity隐藏元素的区别
甘露寺
前端vuereact
前端元素隐藏与条件渲染完全指南(Vuevs.Reactvs.CSS)本文对比v-if、v-show、display:none、opacity:0、visibility:hidden以及React条件渲染的差异,帮你彻底掌握它们的适用场景!核心概念1.DOM树vs.渲染树DOM树:完整的HTML节点结构(无论是否隐藏)。渲染树:浏览器实际绘制到屏幕上的内容(隐藏元素可能被跳过)。2.关键差异特性是否
- 【HarmonyOS next】ArkUI-X休闲益智记忆翻牌【进阶】
harmonyos-next
本文通过记忆翻牌游戏实现,揭秘网络图片在HarmonyOS与iOS设备上的渲染差异,并提供专业级优化方案。基于ArkUI-X的Web组件技术,我们实现了一套代码双端运行的混合架构。一、跨平台实现架构//ArkTS核心实现importweb_webviewfrom'@ohos.web.webview';@Entry@ComponentstructIndex{controller:web_webvie
- 【HarmonyOS Next】ArkUI-X休闲益智接水果【进阶】
harmonyos-next
本文通过ArkUI-X实现跨平台接水果游戏,深入探究网络图片在HarmonyOS与iOS设备上的渲染差异,并提供专业级优化方案。基于WebView的混合架构,我们实现了单代码库双端适配的高效开发模式。一、跨平台架构设计//ArkTS核心实现importweb_webviewfrom'@ohos.web.webview';@Entry@ComponentstructIndex{controller:
- Feign和Dubbo的技术选型对比分析
Amarantine、沐风倩✨
dubbospringboot后端
现在公司项目要做SpringBoot升级2.7.18—>3.4.1。因此我们需要参考芋道的项目和公司当前项目做一个依赖、技术选型、项目结构差异对比分析。我们公司当前用的Dubbo,而芋道最新的一版却用了Feign来代替Dubbo。所以该文章进行一下对比分析。一、Dubbo与Feign简介特性维度Dubbo(3.x)OpenFeign(SpringCloud)通信协议多协议(默认Dubbo、支持gR
- 目标跟踪存在问题以及解决方案
选与握
#目标跟踪目标跟踪人工智能计算机视觉
3D跟踪一、数据特性引发的跟踪挑战1.点云稀疏性与远距离特征缺失问题表现:激光雷达点云密度随距离平方衰减(如100米外车辆点云数不足近距离的1/10),导致远距离目标几何特征(如车轮、车顶轮廓)不完整,跟踪时易因特征匹配失败导致ID丢失。典型案例:在高速公路场景中,200米外的卡车因点云稀疏(仅约50个点),跟踪算法难以区分其与大型货车的形状差异,导致轨迹跳跃或ID切换。技术方案:稀疏点云增强与特
- 2019-2020年线上睡眠市场深度分析报告
我就是夏迎春
本文还有配套的精品资源,点击获取简介:本报告全面分析了2019至2020年间中国线上消费者购买睡眠相关产品的行为和趋势。报告内容涉及市场概况、消费偏好、消费者行为、地域差异及未来展望,详细解读了消费者对多种睡眠产品的偏好及线上市场的发展。京东平台的数据为研究提供了丰富的实证,包括市场增长、产品多样化、高端产品需求上升、科技产品的发展、购买时段、年龄分布、决策因素以及地域差异等。报告指出,健康意识和
- iOS 抓包工具排查接口时区异常:国际化产品调试实战分享
2501_91600747
httpudphttpswebsocket网络安全网络协议tcp/ip
在开发面向全球用户的应用时,“时间”这个维度的处理远比预期复杂。近期在一个国际化版本中,我们遭遇了一个特殊问题:同一接口在不同国家用户手机上表现不一致,有时返回数据为空,有时返回过期内容。服务端逻辑看似正常,客户端日志也无报错,最终我们通过一套多工具组合的抓包流程,还原出隐藏在跨时区处理差异背后的根因。问题背景与初步症状该功能是一个活动弹窗判断接口:根据当前时间返回用户是否可见活动入口。接口响应结
- [学习] PID算法原理与实践(代码示例)
极客不孤独
学习算法c语言
PID算法原理与实践文章目录PID算法原理与实践一、PID算法原理1.1PID算法概述1.定义2.应用领域3.核心目标1.2基本原理1.3数学表达离散化实现(适用于数字控制)二、实践案例(C语言)1.电机转速控制2.温度控制系统3.时钟驯服系统三、常见问题与优化1.积分饱和(Windup)问题2.噪声干扰问题3.非线性系统适配问题四、扩展方向1.数字PID与模拟PID的差异2.变参数PID(如增益
- 技术调研:时序数据库(一)
myskybeyond
时序数据库时序数据库数据库
选择时序数据库时,选择当下主流的解决方案。目前主流的开源解决方案有InfluxDB、TDengine和TimescaleDB。下文从多个维度对比分析,最终根据需求做出选型决策。1.核心架构与设计理念数据库架构特点核心优势InfluxDB-专为时序数据设计的分布式数据库-基于时间线(TimeSeries)模型-开源版(OSS)与商业版(Cloud/Enterprise)功能差异大高写入吞吐量、原生支
- webpack和vite对比解析(AI)
秉承初心
AI创造webpack前端node.js
以下是Webpack和Vite的对比解析,从核心机制、性能、配置扩展性、适用场景等维度进行详细说明:⚙️一、核心机制差异构建模式Webpack:采用打包器模式,启动时需遍历整个模块依赖图,将所有资源打包成Bundle,再启动开发服务器。Vite:基于ESModules原生支持,开发环境跳过打包,按需编译(浏览器请求时实时编译)。生产环境才用Rollup打包。依赖处理Webpack:冷启动时需全量打
- 基于灰色马尔科夫模型预测人口数量,是一种结合灰色系统理论(处理少数据、不确定性)与马尔科夫链(描述随机波动)的融合预测方法
利用灰色模型捕捉人口变化的总体趋势,再通过马尔科夫链修正因随机因素导致的预测偏差,从而提高预测精度。一、模型理论基础灰色系统理论原理(核心:处理少数据、部分信息未知的系统)差异信息原理:系统内外的差异是信息源,人口数据的时间序列差异蕴含变化规律。解的非唯一性原理:信息不完全时,预测结果存在多个可能区间(与马尔科夫状态划分契合)。最小信息原理:仅需少量历史数据(通常≥4个)即可建模,适合人口统计资料
- PHP ADODB 1.99版手册中文翻译
PHPADODB1.99版手册中文翻译(Tripc)感谢记事PHPADODB1.99版手册中文翻译翻译作者:Tripc------------------ADODBPHP在资料库的支援上是很令人称道的,几乎所有的知名资料库系统都有对应的函数群支援,而且支援的很完整。但很不幸的,每一群资料库支援函数无论在名称或叁数结构上,都有很大的差异,这使得PHP的系统开发者在面临更换资料库时,总会觉得痛苦万分。
- python做生物信息学分析_Python从零开始第五章生物信息学①提取差异基因
吴敬欣
python做生物信息学分析
目前来说,做生物信息学的人越来越多,但是我觉得目前而言做生信的主要有三类人:老本行是做实验的,做生信可能是为了辅助研究或者是为了发paper(有非常多的临床生选择趟生信这波水)主要是做生信的,主要涵盖高通量测序数据分析,组学数据分析等等,专门从事生物学数据分析的这群人,其大部分也是本科生物狗作为强大的生力军,以调包写R,python为主。那么这群人就要熟悉看各种包的tutorial以及如何进行常规
- 前端跨域解决方案(8):window.name
1window.name核心window.name是浏览器窗口的一个属性,它有两个关键特性:跨域共享:无论窗口的URL如何变化,window.name的值始终保持不变;容量大:可存储最大约2MB的数据(不同浏览器略有差异)。这使得window.name成为跨域通信的一种特殊方式:通过iframe加载跨域页面,利用window.name传递数据。window.name跨域的核心流程如下:主页面创建指
- 小模型和大模型的区别在哪里?
我非常不满意
人工智能深度学习机器学习
小模型和大模型在多个方面存在显著差异,主要体现在参数量、训练与运行速度、处理数据的准确性及应用场景上。参数量:大模型通常包含数十亿甚至数万亿个参数,这使得它们能够捕捉更复杂的数据模式和关系。相比之下,小模型的参数数量相对较少,通常在几百万到几千万之间,这限制了它们处理复杂任务的能力,但同时也意味着它们可以更快地训练和部署。训练与运行速度:由于参数数量的差异,小模型的训练和推理速度通常比大模型快。这
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的