- python学智能算法(十五)|机器学习朴素贝叶斯方法进阶-CountVectorizer多文本处理
西猫雷婶
人工智能机器学习python学习笔记机器学习python人工智能深度学习scikit-learn
【1】引言前序学习进程中,已经学习CountVectorizer文本处理的简单技巧,先相关文章链接为:python学智能算法(十四)|机器学习朴素贝叶斯方法进阶-CountVectorizer文本处理简单测试-CSDN博客此次继续深入,研究多文本的综合处理。【2】代码测试首先相对于单文本测试,直接将文本改成多行文本:#引入必要的模块fromsklearn.feature_extraction.te
- 深度解析基于贝叶斯的垃圾邮件分类
大千AI助手
人工智能Python#OTHER分类数据挖掘人工智能机器学习算法贝叶斯Bayes
贝叶斯垃圾邮件分类的核心逻辑是基于贝叶斯定理,利用邮件中的特征(通常是单词)来计算该邮件属于“垃圾邮件”或“非垃圾邮件”的概率,并根据概率大小进行分类。它是一种朴素贝叶斯分类器,因其假设特征(单词)之间相互独立而得名(虽然这在现实中不完全成立,但效果通常很好)。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的
- Sklearn 机器学习 数值离散化 区间标签
Thomas Kant
人工智能机器学习sklearn人工智能
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Sklearn机器学习:数值离散化之区间标签设置详解在机器学习中,连续数值型特征并不总是最优选择,尤其是在面对一些对数值大小不敏感的模型(如决策树、朴素贝叶斯)时。此时,我们常常希望将连续变量离散化(Discret
- 第九课:大白话教你朴素贝叶斯
顽强卖力
机器学习-深度学习-神经网络算法python大数据数据分析
这节课咱们来聊聊朴素贝叶斯(NaiveBayes),这个算法名字听起来像是个“天真无邪的数学小天才”,但其实它是个超级实用的分类工具!我会用最接地气的方式,从定义讲到代码实战,保证你笑着学会,还能拿去忽悠朋友!一:朴素贝叶斯是啥?——当概率论遇上“天真”假设1.1定义:贝叶斯定理的“偷懒版”问题:你想判断一封邮件是不是垃圾邮件,或者一条评论是不是好评。贝叶斯定理(原版):[P(A|B)=\frac
- python学智能算法(十三)|机器学习朴素贝叶斯方法进阶-简单二元分类
西猫雷婶
人工智能机器学习python学习笔记机器学习python分类人工智能开发语言矩阵深度学习
引言前述学习进程中,已经学习了拉普拉斯平滑公式计算条件概率的简单应用,文章链接为:python学智能算法(十二)|机器学习朴素贝叶斯方法初步-拉普拉斯平滑计算条件概率在此基础上,今天更进一步,联系一个简单二元分类的项目。项目介绍简单二元分类,就是把数据分成两种样本,完成区分即可。参数定义开展项目之前,先来定义几个参数:先验概率P(y):P(y)=∑j=1j=nyj∑yP(y)=\frac{\sum
- python学智能算法(十二)|机器学习朴素贝叶斯方法初步-拉普拉斯平滑计算条件概率
西猫雷婶
人工智能概率论机器学习机器学习人工智能深度学习矩阵python开发语言
【1】引言前序学习进程中,对条件概率进行了简单探索:https://blog.csdn.net/weixin_44855046/article/details/145388138?spm=1001.2014.3001.5501今天,以此为基础,探索机器学习中朴素贝叶斯方法的基本程序。【2】代码解读【2.1】库引入这里只需要numpy库:#引入numpy模块importnumpyasnp【2.2】初
- python学智能算法(十四)|机器学习朴素贝叶斯方法进阶-CountVectorizer文本处理简单测试
西猫雷婶
python学习笔记机器学习人工智能机器学习python人工智能
【1】引用前序学习文章中,已经对拉普拉斯平滑和简单二元分类进行了初步探索,相关文章链接为:python学智能算法(十二)|机器学习朴素贝叶斯方法初步-拉普拉斯平滑计算条件概率-CSDN博客python学智能算法(十三)|机器学习朴素贝叶斯方法进阶-简单二元分类-CSDN博客在实践应用中也会发现,朴素贝叶斯方法还能对文本进行分类,今天的学习目标就是学习简单的文本操作技巧,需要使用sklearn里面的
- 【数据挖掘】期末复习模拟题(暨考试题)
chaser&upper
数据分析随笔小记数据挖掘python聚类
数据挖掘-期末复习试题挑战全网最全题库单选题多选题判断题填空题程序填空sigmoid曼哈顿距离泰坦尼克号披萨价格预测鸢尾花DBSCN密度聚类决策树购物表单-关联规则火龙果-关联分析数据非线性映射高斯朴素贝叶斯分类器手写数字识别k1-10聚类平均偏差程序分析PM2.5线性回归Titanic数据清洗KNN鸢尾花Kmeans聚类KNN电影分类频繁k项集混淆矩阵OverlookMOOC总结挑战全网最全题库
- 机器学习算法——朴素贝叶斯和特征降维
TY-2025
机器学习机器学习算法人工智能
一、常见概率计算朴素贝叶斯算法是利用概率值进行分类的一种机器学习算法概率:一种事情发生的可能性,取值在[0,1]之间条件概率:表示事件A在另外一个事件B已经发生的条件下的发生概率P(A∣B)P(A|B)P(A∣B)联合概率:表示多个条件同时成立的概率P(AB)=P(A)∗P(B∣A)=P(B)∗P(A∣B)P(AB)=P(A)*P(B|A)=P(B)*P(A|B)P(AB)=P(A)∗P(B∣A)
- 机器学习基础 - 分类模型之朴素贝叶斯
yousuotu
杂项机器学习分类人工智能
朴素贝叶斯文章目录朴素贝叶斯1.基本概念1.条件概率2.先验概率3.后验概率2.贝叶斯公式3.条件独立假设4.从机器学习视角理解朴素贝叶斯朴素贝叶斯中的三种模型1.多项式模型2.高斯模型3.伯努利模型QA1.朴素贝叶斯为何朴素?2.朴素贝叶斯分类中某个类别的概率为0怎么办?3.朴素贝叶斯的要求是什么?4.朴素贝叶斯的优缺点?5.朴素贝叶斯与LR区别?1.基本概念1.条件概率P(X∣Y)=P(X,Y
- BERT分类器和朴素贝叶斯分类器比较
非小号
AIbert人工智能深度学习
一、核心原理对比维度预训练模型(如BERT)朴素贝叶斯分类器模型类型深度学习模型,基于Transformer架构,通过大规模无监督预训练学习语言表示。传统机器学习模型,基于贝叶斯定理和特征条件独立假设。特征表示自动学习文本的上下文相关表示(contextualembeddings),捕捉长距离语义依赖。通常使用词袋模型(BagofWords)或TF-IDF,忽略词序和上下文,仅考虑词频。训练方式两
- Spark与朴素贝叶斯在股票市场预测中的应用及代码实战
飞翔的袋鼠弟
本文还有配套的精品资源,点击获取简介:本项目展示了如何利用Spark框架结合朴素贝叶斯算法进行股票市场的预测。项目涵盖了从原始股票数据的处理到模型训练的全过程,包括数据预处理、特征工程、模型训练和测试。所使用的数据文件包括原始股票数据、不同阶段的数据转换结果、数据平均值计算结果和测试数据集。同时提供了Java和Python实现的代码文件,包括数据处理、模型训练和评估。朴素贝叶斯算法在股票预测中通过
- 连续变量的全概率和贝叶斯公式_朴素贝叶斯分类:原理
小红帽的灰灰狼
连续变量的全概率和贝叶斯公式
贝叶斯原理是英国数学家托马斯·贝叶斯提出的。贝叶斯是个很神奇的人,他的经历类似梵高。生前没有得到重视,死后,他写的一篇关于归纳推理的论文被朋友翻了出来,并发表了。这一发表不要紧,结果这篇论文的思想直接影响了接下来两个多世纪的统计学,是科学史上著名的论文之一。贝叶斯原理贝叶斯为了解决一个叫“逆向概率”问题写了一篇文章,**尝试解答在没有太多可靠证据的情况下,怎样做出更符合数学逻辑的推测。**什么是“
- matlab实现朴素贝叶斯可视化,模式识别(七):MATLAB 实现朴素贝叶斯分类器
哈哈哈哈哈哈哈哈鸽
本系列文章由云端暮雪编辑,转载请注明出处多谢合作!基础介绍今天介绍一种简单高效的分类器——朴素贝叶斯分类器(NaiveBayesClassifier)。相信学过概率论的同学对贝叶斯这个名字应该不会感到陌生,因为在概率论中有一条重要的公式,就是以贝叶斯命名的,这就是“贝叶斯公式”:贝叶斯分类器就是基于这条公式发展起来的,之所以这里还加上了朴素二字,是因为该分类器对各类的分布做了一个假设,即不同类的数
- 基于ThinkPHP-Laravel的智能养猫商城系统:融合AI与创新算法的未来宠物电商解决方案——用技术重新定义宠物生活体验
qq_42682397
laravel人工智能算法
导语:当养猫经济遇上全栈开发与AI算法在宠物经济蓬勃发展的2025年,我们推出了一款基于ThinkPHP-Laravel全栈开发的智能养猫用品商城系统。系统不仅实现了电商核心功能,更创新性融合车牌识别、K-means聚类算法、朴素贝叶斯算法等AI能力,为宠物主提供智能化购物体验,为商家打造数据驱动的精准运营体系。项目源码已开源,助力开发者快速构建高扩展性宠物垂直电商平台!系统核心亮点:AI赋能,重
- 使用贝叶斯算法完成垃圾邮件分类实战
万能小贤哥
算法分类人工智能
一、背景与问题分析垃圾邮件长期以来困扰用户,传统方法如关键词匹配和校验码验证存在明显缺陷:误判率高:正常邮件可能包含"发票"、"中奖"等关键词。易被规避:垃圾邮件发送者会替换关键词或插入干扰字符。贝叶斯分类方法通过计算词汇在垃圾邮件中的联合概率实现更精准分类,其优势在于:动态适应新词汇和表达方式数据量越大分类效果越好天然支持概率化评估二、算法核心原理朴素贝叶斯公式:P(Spam∣Words)=P(
- 建立多项式朴素贝叶斯模型实战指南
万能小贤哥
机器学习人工智能算法
一、模型选择与实现针对文本分类任务(如垃圾邮件识别),多项式朴素贝叶斯(MultinomialNB)是最优选择:适用场景:处理离散型特征(如词频、TF-IDF值)核心优势:直接利用整数型词频特征,无需假设数据分布对比区别:高斯朴素贝叶斯:假设特征符合正态分布,适合连续型数据伯努利朴素贝叶斯:处理二值化特征(是否存在某个词)python复制下载fromsklearn.naive_bayesimpor
- 机器学习算法——朴素贝叶斯算法
阿K还阔以
机器学习算法人工智能
一、朴素贝叶斯算法介绍1、朴素贝叶斯算法概述朴素贝叶斯算法是一种经典的概率分类算法,它基于贝叶斯定理和特征独立性假设。该算法常被用于文本分类、垃圾邮件过滤、情感分析等领域。朴素贝叶斯算法的核心思想是通过已知类别的训练样本集,学习出每个类别的概率分布模型,然后根据待分类样本的特征,利用贝叶斯定理计算出样本属于各个类别的后验概率,最终选择具有最大后验概率的类别作为分类结果。在朴素贝叶斯算法中,特征之间
- Python从0到100(五十九):机器学习-朴素贝叶斯分类及鸢尾花分类
是Dream呀
分类数据挖掘人工智能
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 实战9:机器学习之:朴素贝叶斯方法对鸢尾花卉品种预测实战教程
计算机毕设论文
机器学习实战100例算法数据挖掘决策树
1.理论部分朴素贝叶斯是一种基于贝叶斯定理的有监督分类算法。该算法一个重要的特点:假设特征条件独立,正是这个假设使得朴素贝叶斯法的学习和预测变得简单。在特征条件独立的假设下,朴素贝叶斯法先利用训练数据集的先验统计信息计算特征向量与标签的联合概率分布,然后对于新输入的样本点,利用联合概率分布计算后验概率,并用后验概率最大的输出标签确定为新样本点的类别。注意:假设特征条件独立正是朴素贝叶斯中“朴素”两
- 鸢尾花python贝叶斯分类_机器学习-利用三种分类器实现鸢尾花分类
weixin_39755853
鸢尾花python贝叶斯分类
利用决策树,KNN和朴素贝叶斯三种分类器,对鸢尾花数据集进行分类。下面是具体的流程和代码:1、数据读取:实验数据是直接加载的sklearn内置的鸢尾花数据集,共150条数据,包含4个特征,而且是一个三分类问题。fromsklearnimportdatasets#导入方法类iris=datasets.load_iris()#加载iris数据集iris_feature=iris.data#加载特征数据
- 基于机器学习的舆情分析算法研究
赵谨言
论文经验分享毕业设计
标题:基于机器学习的舆情分析算法研究内容:1.摘要随着互联网的飞速发展,舆情信息呈现爆炸式增长,如何快速准确地分析舆情成为重要课题。本文旨在研究基于机器学习的舆情分析算法,以提高舆情分析的效率和准确性。方法上,收集了近10万条社交媒体的舆情文本数据,利用多种机器学习算法如支持向量机、朴素贝叶斯、决策树等进行训练和优化。结果表明,经过优化的支持向量机算法在舆情分类的准确率上达到了85%以上,明显高于
- 朴素贝叶斯和半朴素贝叶斯(AODE)分类器Python实现
McQueen_LT
机器学习机器学习python人工智能数据分析数据挖掘
一、概述机器学习最后一次实验,要求实现朴素贝叶斯和AODE的半朴素贝叶斯分类器。由于老师说可以调用现成的相关机器学习的库,所以我一开始在做朴素贝叶斯分类器的时候,直接调用了sklearn库,很方便,可是问题来了,在做AODE半朴素贝叶斯分类器的时候,并没有找到集成好的方法。所以就想着自己把半朴素贝叶斯分类器实现了,朴素贝叶斯分类就直接调用库算了。可是让人头大的是,上来就直接实现AODE分类器还是不
- Level3 — PART 4 机器学习算法 — 朴素贝叶斯
ErbaoLiu
数据分析&大模型自然语言处理&大模型机器学习&大模型机器学习人工智能朴素贝叶斯NaiveBayes
目录贝叶斯定理朴素贝叶斯模型(NaiveBayesModel)估计离散估计极大似然估计案例朴素贝叶斯扩展高斯贝叶斯分类器原理应用源码分析伯努利贝叶斯分类器原理源码分析多项朴素贝叶斯分类器半朴素贝叶斯分类器模拟题CDALEVELIII模拟题(一)CDALEVELIII模拟题(二)贝叶斯定理贝叶斯定理由英国数学家贝叶斯(ThomasBayes1702-1761)发展,用来描述两个条件概率之间的关系,比
- 机器学习常用算法整理
上天夭
面试
文章目录机器学习常用算法整理一、监督学习1.1、决策树(DecisionTrees)1.1.1、ID31.1.2、C4.51.1.3、CART1.2、朴素贝叶斯分类(NaiveBayesianclassification)1.3、线性回归(LinearRegression)1.4、逻辑回归(LogisticRegression)1.5、支持向量机(SupportVectorMachine,SVM)
- 机器学习(6)——朴素贝叶斯
追逐☞
机器学习机器学习人工智能概率论
文章目录1.什么是朴素贝叶斯算法?2.核心思想3.数学基础3.算法步骤3.1.计算先验概率3.2.计算条件概率4.常见变种5.优缺点6.零概率问题与平滑技术7.应用场景8.Python示例9.参数调优10.总结1.什么是朴素贝叶斯算法?朴素贝叶斯算法(NaiveBayes)是一种基于贝叶斯定理的概率分类算法,在机器学习和数据挖掘中广泛应用。它被称为“朴素”的原因是它假设特征之间是条件独立的,这简化
- 基于文本的情感分析
李昊哲小课
大数据数据分析人工智能python数据分析机器学习自然语言处理
基于文本的情感分析代码逻辑顺序说明数据加载与特征转换:首先加载积极和消极评论数据,并将其转换为特征集。这是情感分析的基础步骤,为后续的模型训练提供数据支持。数据集划分:将特征集划分为训练集和测试集。通常使用80%的数据作为训练集,20%的数据作为测试集,以评估模型的性能。模型训练:使用训练集训练朴素贝叶斯分类器。朴素贝叶斯是一种简单而有效的分类算法,适用于文本分类任务。模型测试:使用测试集评估分类
- 【机器学习】每日一讲-朴素贝叶斯公式
问道飞鱼
机器学习与人工智能机器学习人工智能朴素贝叶斯公式
文章目录**一、朴素贝叶斯公式详解****1.贝叶斯定理基础****2.从贝叶斯定理到分类任务****3.特征独立性假设****4.条件概率的估计****二、在AI领域的作用****1.文本分类与自然语言处理(NLP)****2.推荐系统****3.医疗与生物信息学****4.实时监控与异常检测****5.多模态数据处理****三、推导过程示例(以文本分类为例)****四、代码实现(Python)
- MATLAB基础应用精讲-【数模应用】贝叶斯优化
林聪木
机器学习算法人工智能
目录前言算法原理朴素贝叶斯算法核心思想示例贝叶斯定理贝叶斯网络贝叶斯网络的结构形式因子图数学模型最优贝叶斯推理贝叶斯优化什么高斯过程acquisition函数朴素贝叶斯贝叶斯公式与条件独立假设1)先验概率与后验概率2)贝叶斯公式3)条件独立假设与朴素贝叶斯平滑处理1)为什么需要平滑处理2)拉普拉斯平滑及依据应用案例中文分词统计机器翻译贝叶斯图像识别,AnalysisbySynthesisEM算法与
- [Machine Learning] 贝叶斯公式 & 全概率公式(Bayes Rule & Total Probability Theorem)
Oh_MyBug
MachineLearning概率论机器学习人工智能
KeywordsBayesRule(贝叶斯公式)TotalProbabilityTheorem(全概率公式)PriorProbability(先验概率)PosteriorProbability(后验概率)举个例子如图,这是一个简单两步式的模型。现在我们需要完成事件BBB,那么可以有n种不同的路A1,A2,A3,...,AnA_1,A_2,A_3,...,A_nA1,A2,A3,...,An选择:如
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分