- 使用Couchbase中的向量搜索进行智能查询
eahba
python
技术背景介绍Couchbase是一种强大的分布式NoSQL数据库,广泛应用于云、移动、AI和边缘计算应用中。其向量搜索功能,作为全文搜索服务的一部分,支持在应用中进行高效的语义查询。这为开发者在实现AI驱动的应用时提供了极大的便利。核心原理解析Couchbase的向量搜索利用向量嵌入技术对文本进行处理,可以实现基于语义相似度的查询。这与传统的关键词匹配有根本的不同,更适合AI应用场景中模糊或语义相
- 多模态大模型:技术原理与实战 模型压缩实战
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战模型压缩实战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:多模态大模型,技术原理,模型压缩,实战,TensorFlow,PyTorch,模型压缩方法,应用场景1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,多模态大模型在图像识别、语音识别、自然语言处理等领域的应用越来越广泛。然而,多模态大模型通常具有庞大
- 基于Python的新闻网站内容爬取与分析:从数据获取到文本挖掘的完整指南
Python爬虫项目
2025年爬虫实战项目python开发语言人工智能爬虫oracle数据挖掘
引言在当今信息化社会,新闻成为我们获取世界信息的重要途径。通过新闻网站,用户能够快速了解时事热点、政治、经济、娱乐等各类信息。随着技术的发展,获取新闻数据已经变得越来越简单。我们可以利用Python编写爬虫程序,自动化地从新闻网站上抓取最新的新闻内容,并进行进一步的分析,如情感分析、关键词提取、热点话题分析等。本篇博客将为你详细介绍如何使用Python爬虫技术从新闻网站抓取最新新闻,并进行分析。我
- DeepSeek与剪映短视频创作指南
meisongqing
人工智能DeepSeek剪映
DeepSeek(深度求索)作为一家专注实现AGI的中国公司,其技术可能涉及AI文本生成、图像处理等领域,结合剪映的智能剪辑功能,可以大幅提升短视频创作效率。以下是结合两者优势的详细创作步骤:一、创意策划阶段AI灵感激发使用DeepSeek的AI文本生成功能,输入关键词(如"美食教程"、"科技科普")获取创意方向生成10-20个标题备选(示例Prompt:"生成10个吸引年轻人的美妆短视频标题")
- Manus联创澄清:我们并未使用MCP技术
耶耶Norsea
网络杂烩人工智能
摘要近日,Manus联创针对外界关于其产品可能涉及“沙盒越狱”的疑问进行了正式回应。公司明确表示并未使用Anthropic的MCP(模型上下文协议)技术,并强调MCP是一个旨在标准化应用程序与大型语言模型(LLM)之间上下文交互的开放标准。此外,Manus联创宣布了开源计划,以增强透明度和社区参与。季逸超也确认他们没有采用MCP技术,进一步澄清了相关质疑。关键词沙盒越狱,MCP技术,开源计划,透明
- 【UDS诊断(ClearDiagnosticInformation_0x84服务)测试用例CAPL代码全解析⑦】
车端域控测试工程师
测试用例汽车经验分享CANoe学习
ISO14229-1:2023UDS诊断【ClearDiagnosticInformation_0x84服务】_TestCase07作者:车端域控测试工程师更新日期:2025年03月11日关键词:UDS诊断协议、清除诊断信息服务、ClearDiagnosticInformation_0x84服务、ISO14229-1:2023TC84-007测试用例用例ID测试场景验证要点参考条款预期结果TC84
- 使用Java对接StockTV印度股票数据源API实战指南
java爬虫
关键词:JavaAPI开发、SpringBoot、WebSocket、ApacheHttpClient一、项目概述本指南将使用Java实现StockTV金融数据API的完整对接方案,包含以下核心模块:✅RESTAPI客户端:支持同步/异步调用✅WebSocket实时订阅:基于SpringWebSocket✅企业级特性:连接池管理、熔断降级✅生产就绪:完整的异常处理和监控二、环境准备1.技术栈要求J
- 警惕AI神话破灭:深度解析大模型缺陷与禁用场景指南
领码科技
AI应用IT职场大模型缺陷AI工具风险伦理挑战应用场景限制可信AI
摘要当前AI大模型虽展现强大能力,但其本质缺陷可能引发系统性风险。本文从认知鸿沟、数据困境、伦理雷区、技术瓶颈四大维度剖析大模型局限性,揭示医疗诊断、法律决策等8类禁用场景,提出可信AI建设框架与用户防护策略。通过理论分析与实操案例结合,为规避AI工具风险提供系统性解决方案。关键词:大模型缺陷、AI工具风险、伦理挑战、应用场景限制、可信AI一、认知鸿沟:无法企及的人类智慧1.1创造性思维的致命短板
- 成功案例丨开发时间从1小时缩短到3分钟:如何利用历史数据训练AI模型,预测设计性能?
Altair澳汰尔
PhysicsAI仿真AI机器学习HyperWorks数据分析
案例简介PhysicsAI™助力HEROMOTOCORP实现设计效率提升99%印度领先的跨国摩托车和踏板车制造商HeroMotoCorpLtd.(以下简称Hero)致力于通过将人工智能(AI)和机器学习技术融入有限元分析(FEA)流程,以加速产品开发周期。在其首个AI驱动项目——摩托车把手设计优化中,Hero采用了PhysicsAI™几何深度学习解决方案,利用历史数据训练AI模型并预测设计性能。A
- 数据分析与AI丨AI Fabric:数据和人工智能架构的未来
Altair澳汰尔
数据分析aiRapidMiner知识图谱人工智能
AIFabric架构是模块化、可扩展且面向未来的,是现代商业环境中企业实现卓越的关键。在当今商业环境中,数据分析和人工智能领域发展可谓日新月异。几乎每天都有新兴技术诞生,新的应用场景不断涌现,前沿探索持续拓展。可遗憾的是,众多企业在利用数据和人工智能方面,脚步总是滞后。这是每个行业进行创新和获得竞争优势的冲刺阶段,但正如大多数企业时常感受到的那样,大规模实施下一代数据和AI工具说起来容易做起来难。
- 大语言模型原理基础与前沿 双层路由多模态融合、多任务学习和模块化架构
AI智能涌现深度研究
AI大语言模型和知识图谱融合Python入门实战DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿:双层路由多模态融合、多任务学习和模块化架构关键词:大语言模型、双层路由、多模态融合、多任务学习、模块化架构、神经网络、自然语言处理1.背景介绍大语言模型(LargeLanguageModels,LLMs)已经成为人工智能和自然语言处理领域的重要研究方向。随着GPT-3、BERT等模型的出现,大语言模型在各种任务中展现出了惊人的性能。然而,随着模型规模的不断扩大和应用场景的
- 领域大模型之微调技术和最佳实践
程序员莫玛
人工智能深度学习语言模型金融
BERT和GPT-3等语言模型针对语言任务进行了预训练。微调使它们适应特定领域,如营销、医疗保健、金融。在本指南中,您将了解LLM架构、微调过程以及如何为NLP任务微调自己的预训练模型。-介绍-大型语言模型(LLM)的特别之处可以概括为两个关键词——大型和通用。“大”是指它们训练的海量数据集及其参数的大小,即模型在训练过程中学习的记忆和知识;“通用”意味着他们具有广泛的语言任务能力。更明确地说,L
- JSON数据解析实战:从嵌套结构到结构化表格
亿牛云爬虫专家
代理IP爬虫代理pythonjson数据解析嵌套结构结构化表格GoogleScholar学术文献爬虫代理
在信息爆炸的时代,如何从杂乱无章的数据中还原出精准的知识图谱,是数据侦探们常常面临的挑战。本文以GoogleScholar为目标,深入解析嵌套JSON数据,从海量文献信息中提取关键词、作者、期刊等内容。最终,我们不仅将数据转换成结构化表格,还通过Graphviz制作出技术关系图谱,揭示文献间的隐秘联系。关键数据分析在本次调研中,我们的核心目标是获取GoogleScholar上的学术文献信息。为此,
- LLM论文笔记 20: How to think step-by-step: A mechanistic understanding of chain-of-thought reasoning
Zhouqi_Hua
大模型论文阅读人工智能chatgpt论文阅读机器学习深度学习语言模型
Arxiv日期:2024.5.16机构:IIT关键词CoT本质LLM推理本质核心结论1.CoT推理的功能组件尽管不同阶段的推理任务具有不同的推理需求,模型内部的功能组件几乎是相同的(共享而非独享)不同的神经算法实际上是由类似归纳头(inductionheads)等机制组合而成2.注意力机制中的信息流动attentionheads在不同的模型层之间传递信息,特别是当它们涉及到本体论相关(ontolo
- 数据分析在宇宙观测中的重要性
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
数据分析在宇宙观测中的重要性关键词:数据分析、宇宙观测、数据预处理、数据挖掘、数据可视化摘要:本文将探讨数据分析在宇宙观测中的重要性,从数据分析在宇宙观测中的应用背景、重要性、面临的挑战与机遇以及未来发展趋势等方面进行深入分析,旨在为读者提供一个全面而详细的了解。引言第1章:分析数据与宇宙观测的关联1.1.1数据分析在宇宙观测中的应用背景宇宙观测是研究宇宙的结构、演化、性质以及各种物理现象的科学。
- python爬虫项目(十二):爬取各大音乐平台排行榜并分析音乐类型趋势
人工智能_SYBH
爬虫试读2025年爬虫百篇实战宝典:从入门到精通python爬虫开发语言python爬虫项目python爬虫
目录1.项目简介2.工具与技术3.爬取音乐平台排行榜数据3.1使用requests和BeautifulSoup爬取网易云音乐排行榜3.2爬取QQ音乐排行榜4.数据处理4.1合并数据5.分析音乐类型趋势5.1使用关键词匹配类型6.数据可视化6.1绘制音乐类型分布图6.2绘制时间趋势图7.总结爬取各大音乐平台排行榜并分析音乐类型趋势是一个有趣且有意义的项目。我们可以通过以下步骤来实现:1.项目简介本项
- StarUML~时序图效果
Johhny Rade
UML参考
01时序图基本操作对象间调用:Object1Object2对象自调用:Object302表达条件结构与循环结构左侧1:条件结构左侧2:循环结构03时序图操作分组(顺序,循环等)一组相关的顺序操作,关键词seq相关的循环操作,关键词loop其它…04时序图示例
- 2021-09-09【linux】丨shell使用for循环遍历文件/数组
穆易青
数据处理读书笔记生物信息linuxpython正则表达式
目录摘要for循环遍历文件使用方法方法一方法二总结摘要在日常生信分析过程中,分析员或多或少会使用for循环批量处理样品或者分组。这里我简单整理一下自己常用的两种遍历方法。for循环遍历文件使用方法方法一对于在同一个文件内的所有样品,使用ls可以遍历该文件夹内的所有文件名。foriin`ls./`;doecho${i}done<
- DeepSeek市场份额攀至9.6%,探索生成式AI的行业变革之路
耶耶Norsea
网络杂烩人工智能
摘要最新发布的“全球生成式AI行业趋势”报告显示,生成式AI正深刻改变多个行业的结构。尤其值得注意的是,DeepSeek的市场份额已提升至9.6%,在全球排名中稳居第二位。报告指出,传统搜索、网站开发、自由职业者及教育技术等领域正受到这一技术的显著影响。生成式AI不仅推动了这些行业的变革,还提供了深入的分析和见解,预示着未来更多的创新与发展。关键词生成式AI,市场份额,行业变革,DeepSeek,
- ubuntu22.04安装P104-100一些经验(非教程)
junqiduhang
ubuntup104-100驱动
一、版本:系统:ubuntu-22.04.5-desktop-amd64.isoNvidia驱动:NVIDIA-Linux-x86_64-570.124.04.run。官网下载即可二、经验1、通用教程⭐直接关键词搜“ubuntup104”会有一些教程,比如禁用nouveau等安装参考:https://blog.csdn.net/weixin_42771529/article/details/144
- 自我训练模型:通往未来的必经之路?
耶耶Norsea
网络杂烩人工智能
摘要在探讨是否唯有通过自我训练模型才能掌握未来的问题时,文章强调了底层技术的重要性。当前,许多人倾向于关注应用层的便捷性,却忽视了支撑这一切的根本——底层技术。将模型简单视为产品是一种短视行为,长远来看,理解并发展底层技术才是关键。只有全面把握从底层到应用层的技术链,才能真正引领未来的创新与发展。关键词自我训练模型,掌握未来,底层技术,应用层,模型产品一、技术层面的深入探讨1.1自我训练模型的技术
- 无监督AI训练:机遇与挑战并存
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
无监督AI训练:机遇与挑战并存关键词:无监督学习、AI训练、机器学习、聚类算法、降维技术、深度学习摘要:本文深入探讨无监督AI训练这一新兴领域,首先介绍了其基本概念与原理,然后详细解析了无监督AI训练的核心技术,如聚类算法和降维技术,以及无监督深度学习。接着,本文通过实际项目案例分析,展示了无监督AI训练的应用实践。最后,本文分析了无监督AI训练面临的挑战,并展望了其未来发展趋势。通过本文的阅读,
- 提高客户体验:人类计算在营销中的应用
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
人类计算与营销:开启个性化时代的未来人类计算与营销:开启个性化时代的未来关键词:人工智能、个性化营销、客户体验、数据驱动、客户关系管理摘要:本文探讨了人类计算在营销中的应用,包括语音识别、人脸识别、自然语言处理等技术,以及如何通过这些技术实现个性化营销、客户关系管理和用户体验优化。文章分析了当前技术的发展趋势和面临的挑战,并提出了未来发展的方向。引言随着人工智能技术的飞速发展,人类计算在各个领域中
- AIGC从入门到实战:ChatGPT+Midjourney,绘出中国古风意境之美
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
AIGC从入门到实战:ChatGPT+Midjourney,绘出中国古风意境之美关键词:AI生成内容(AIGC),ChatGPT,Midjourney,中国古风,创意设计,艺术表达1.背景介绍1.1问题由来人工智能生成内容(ArtificialIntelligenceGeneratedContent,AIGC)作为AI技术的重要分支,近年来在视觉、音乐、文本等多个领域取得了显著进展,引领了内容创作
- 论文阅读方法
某风吾起
work哲学与人生论文阅读
文章目录步骤一:对论文进行自我判断阅读题目和关键词。阅读摘要阅读总结要点步骤二:阅读文章阅读图表和图表的注释阅读引言阅读实验部分阅读结果和作者对结果的讨论(创新点)要点步骤三:精度论文回答问题1回答问题2回答问题3要点步骤一:对论文进行自我判断阅读题目和关键词。观察这些关键词是否与你的研究的内容有关。如果不相干,可以随时停止,换篇文章看。阅读摘要摘要一般包含了整篇文章的主要内容,是非常非常重要的部
- 4.2 Hugging Face狂揽40亿背后的开源变现密码:GitHub明星项目的黄金投资法则
少林码僧
开源github语言模型人工智能sentinel
HuggingFace狂揽40亿背后的开源变现密码:GitHub明星项目的黄金投资法则关键词:开源项目商业化、GitHub生态分析、AIAgent投资策略、开发者工具市场、技术产品价值评估1.开源项目商业化的黄金时代根据GitHub2023年度报告数据,全球开源项目已突破3.5亿个,企业级开源贡献量年增长率达34%。明星开源项目的商业化路径呈现明显特征:
- 微博舆情分析:使用Python进行深度解析
傻啦嘿哟
关于python那些事儿python开发语言
目录一、准备工作二、基础理论知识三、步骤详解数据预处理情感分析关键词提取四、案例分享数据爬取数据分析五、优化六、结论在当今信息爆炸的时代,社交媒体平台如微博已成为公众表达意见和情感的重要渠道。微博舆情分析通过对大量微博数据进行挖掘和分析,可以揭示公众对某些事件或话题的态度和情绪。本文将详细介绍如何使用Python进行微博舆情分析,包括数据获取、预处理、情感分析、关键词提取和数据可视化等步骤,并附上
- 百度搜索url参数详解
阿尔法小菜鸡
百度http
http://www.baidu.com/s?wd=关键字wd(Keyword):查询的关键词;http://www.baidu.com/s?wd=关键字&cl=3cl(Class):搜索类型,cl=3为网页搜索,cl=2为图片搜索;http://video.baidu.com/v?rn=20&pn=0pn(PageNumber):显示结果的页数;http://www.baidu.com/s?ie
- 6miu盘搜的使用方法
亿欧科技
python前端服务器
6miu盘搜是一款强大的网盘搜索引擎,可以帮助用户快速找到所需的网盘资源。本文将为新手用户详细介绍6miu盘搜的使用方法,包括搜索技巧和文件管理方法等。一、基本搜索打开6miu盘搜网站,在搜索框中输入关键词,点击搜索按钮或按回车键即可开始搜索。搜索结果会显示相关的网盘资源,包括文件名、文件大小、分享时间和分享链接等信息。点击分享链接,输入提取码(如有),即可打开网盘页面并下载文件。二、高级搜索技巧
- 【爬虫工具】小红书评论高级采集软件
python死忠3016
小红书爬取软件爬虫
用python开发的爬虫采集工具【爬小红书搜索评论软件】,支持根据关键词采集评论。思路:笔记关键词->笔记链接->评论·软件界面:·完整文章、详细了解:https://mp.weixin.qq.com/s/C_TuChFwh8Vw76hTGX679Q好用的软件一起分享!
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持