- 适配器模式(Adapter Pattern)详解:如何通过适配器解决接口不兼容的问题
江沉晚呤时
设计模式服务器.net运维c#.netcore开发语言适配器模式
在软件开发中,我们经常遇到不同系统或组件之间的接口不兼容的问题。如何将这些不兼容的接口进行整合,使得它们能够协同工作,成为一个常见的挑战。适配器模式(AdapterPattern)正是为了解决这个问题而设计的一种结构型设计模式。适配器模式通过提供一个中间层,将不兼容的接口适配成客户端需要的接口,从而让它们能够正常协作。本文将深入探讨适配器模式的概念、工作原理以及在C#中的实现,帮助开发者在实际项目
- C# 建造者模式(Builder Pattern)详细讲解
江沉晚呤时
设计模式C#java数据库开发语言.netcorec#netjavascript
一、什么是建造者模式?建造者模式(BuilderPattern)是一种创建型设计模式,它通过将一个复杂对象的构建过程与其表示分离,使得同样的构建过程可以创建不同的表示。这个模式主要应用于那些构建过程复杂且涉及多个步骤的场景,特别适合于需要灵活配置且逐步构建的对象。1.1.设计模式分类设计模式(DesignPatterns)分为三大类:创建型模式(CreationalPatterns):关注如何创建
- 测试工程师指南:基于需求文档构建本地安全知识库的完整实战
Python测试之道
python测试提效安全知识库python
需求文档是测试工程师日常工作的核心工具,如何快速检索需求文档中的关键信息(文本、表格、图片等),并将其转化为可供AI查询的知识库,是提升工作效率的重要手段。本文将通过对需求文档(docx格式)的处理,详细讲解如何构建一个安全的本地知识库,并通过代码实现具体操作,确保每一步都可落地。一、本地知识库的安全性与连接方案在构建本地知识库时,安全性是首要考虑的因素,尤其是对于需求文档这样的敏感数据。以下是本
- 如何使用MATLAB进行高效的GPU加速深度学习模型训练?
百态老人
matlab深度学习开发语言
要使用MATLAB进行高效的GPU加速深度学习模型训练,可以遵循以下步骤和策略:选择合适的GPU硬件:首先,确保您的计算机配备有支持CUDA的NVIDIAGPU,并且其计算能力至少为3.0或以上。可以通过gpuDevice命令检查GPU是否具备加速功能。安装必要的工具箱:确保安装了MATLAB的DeepLearningToolbox和ParallelComputingToolbox,这些工具箱提供
- Vue+EasyExcel来操作文件上传下载
☆夜幕星河℡
SpringBootExcelEasyExceljavavuespringboot
Excel导入导出在管理一个系统时,总会有许多的数据,为了方便浏览查看数据,系统总会提供「导出Excel」的功能;有导出就有导入,在要向数据库中插入大量的数据时,我们向程序提供准备好的Excel,然后程序读取表格内容,并将数据添加到数据库中。实现这个「导入/导出Excel」的功能也不复杂,我们使用第三方的类库即可实现。比如:Apachepoi、JavaExcel(JXL)和阿里巴巴开源的Easye
- 【技术解密】本地部署 DeepSeek-V3:完整指南
海棠AI实验室
“智元启示录“-AI发展的深度思考与未来展望人工智能深度学习DeepSeek
目录引言运行环境需求下载与安装推理部署总结参考资源引言随着人工智能的快速发展,开源大模型正逐步改变着技术生态。DeepSeek-V3作为最新的开源大模型之一,不仅提供了强大的推理能力,同时也支持本地部署,使开发者可以灵活地进行自定义优化。本文将详细介绍如何在本地部署DeepSeek-V3,涵盖系统要求、安装步骤、模型转换及不同推理框架的应用。1.运行环境需求1.1硬件要求✅NVIDIAGPU(支持
- 人工智能伦理与可持续发展
CarlowZJ
人工智能
前言人工智能(AI)技术正在深刻地改变我们的生活和工作方式。从自动驾驶汽车到智能医疗系统,从个性化推荐到自动化决策,AI的应用无处不在。然而,随着技术的快速发展,其伦理和社会影响也引发了广泛的关注。人工智能伦理不仅涉及技术本身的公平性、透明性和安全性,还涉及到更广泛的社会、经济和环境影响。本文将探讨人工智能伦理的核心问题,并从可持续发展的角度提出应对策略。一、人工智能伦理的核心问题1.1数据隐私与
- 【DeepSeek应用】本地部署deepseek模型后,如何在vscode中调用该模型进行代码撰写,检视和优化?
AndrewHZ
深度学习新浪潮AI算法工程师面试指北vscode人工智能深度学习DeepSeek算法语言模型编辑器
若已成功在本地部署了DeepSeek模型(例如通过vscode-llm、ollama或私有API服务),在VSCode中调用本地模型进行代码撰写、检视和优化的完整流程如下:1.准备工作:确认本地模型服务状态模型服务类型:若使用HTTPAPI服务(如FastAPI/Flask封装),假设服务地址为http://localhost:8000。若使用ollama部署,模型名称为deepseek,调用命令
- 小米音频理解技术重大突破:7B模型借助DeepSeek-R1算法引领行业新篇章
耶耶Norsea
网络杂烩人工智能深度学习
摘要小米公司通过采用DeepSeek-R1算法的迁移技术,在音频理解领域实现了重大突破。其7B模型在MMAU音频评测基准中表现出色,成功登顶排行榜。MMAU评测基准包含10000条音频样本,涵盖语音、环境声和音乐等多种类型,难度极高。即便如此,该模型的表现已超越人类专家的82.2%识别准确率,展现出卓越的音频理解能力。关键词小米音频突破,DeepSeek-R1算法,7B模型进展,MMAU评测基准,
- 24小时响应+零宕机!TRS收益互换系统售后如何成为券商“救命稻草”?
Ashlee_code
架构javapythonc++c语言
《【券商震惊】传统询价3小时→TRS黑科技10分钟!盈立证券交易量暴增150%背后秘密》开篇:询价耗时3小时?券商正在被低效“慢性杀死”电话询价、邮件比价、Excel汇总——传统场外交易中,一次询价流程动辄数小时,客户流失率高达40%!令克软件TRS收益互换平台,依托DeepSeek动态定价算法与多发行方实时比价引擎,将询价响应时间从3小时压缩至10分钟,助力盈立证券交易量飙升150%,彻底改写行
- 鸿蒙 @ohos.animator (动画)
淼学派对
harmonyos华为
鸿蒙@ohos.animator(动画)在鸿蒙Next开发中,@ohos.animator模块提供了强大的动画功能,支持属性动画、帧动画等多种动画效果。通过@ohos.animator,开发者可以轻松实现复杂的动画效果,提升应用的用户体验。本文将详细介绍如何使用@ohos.animator模块实现动画效果,并提供一些实际代码示例。一、动画模块的基本概念在鸿蒙Next中,动画可以分为以下几类:属性动
- 如何在 GitHub 上修改他人的分支
vortex5
教程github
在GitHub上修改他人的分支是一个常见的协作需求,但具体操作取决于你是否拥有目标仓库的直接推送权限。如果你是项目的协作者,可以直接修改分支;如果没有权限,则需要通过Fork和PullRequest(PR)的方式贡献代码。本文将详细介绍这两种情况的操作步骤,涵盖从克隆仓库到提交变更的完整流程,并提供实用建议,确保你的协作过程顺畅高效。一、直接修改他人分支(需要协作者权限)如果你被添加为目标仓库的协
- 缓存:节省使用大模型的成本
雪碧没气阿
spring人工智能机器人自然语言处理AI大模型缓存
稍有经验的程序员对缓存都不陌生,在任何一个正式的工程项目上都少不了缓存的身影。硬件里面有缓存,软件里面也有缓存,缓存已经成了程序员的必修课。我们为什么要使用缓存呢?主要就是为了减少访问低速服务的次数,提高访问速度。大模型显然就是一个低速服务,甚至比普通的服务还要慢。为了改善大模型的使用体验,人们已经做出了一些努力,比如采用流式响应,提升第一个字出现在用户面前的速度。缓存,显然是另外一个可以解决大模
- 【大模型实战篇】使用GPTQ量化QwQ-32B微调后的推理模型
源泉的小广场
大模型大模型量化推理模型量化量化qwq32bgptq量化大模型推理性能调优
1.量化背景之所以做量化,就是希望在现有的硬件条件下,提升性能。量化能将模型权重从高精度(如FP32)转换为低精度(如INT8/FP16),内存占用可减少50%~75%。低精度运算(如INT8)在GPU等硬件上计算效率更高,推理速度可提升2~4倍。我们的任务是,将QwQ-32B微调后的推理模型,也就是bf16的精度,通过量化,压缩到int4。关于QwQ-32B微调,可以参考《利用ms-swift微
- 嵌入式开发之STM32学习笔记day06
小程同学>o<
嵌入式学习之STM32stm32学习笔记
基于STM32F103C8T6的开发实践——从入门到精通011.引言STM32系列微控制器是STMicroelectronics推出的一款高性能、低功耗的32位微控制器,广泛应用于嵌入式系统中。STM32F103C8T6是其中非常受欢迎的一款,凭借其强大的性能、丰富的外设接口和低廉的价格,成为了开发者的首选之一。本文将通过实例,详细介绍如何基于STM32F103C8T6进行开发,并带领读者完成从简
- pytorch中的DataLoader
朋也透william
pytorch人工智能python
在PyTorch中,DataLoader是一个工具类,用于高效地加载数据并准备数据输入到模型中。它支持数据的批量加载、随机打乱、并行加载和迭代操作,是训练深度学习模型的关键组件之一。1.基本功能DataLoader的主要职责是从数据集中提取样本,并根据设置返回一个批次的数据。它与Dataset类结合使用:Dataset:定义数据集的来源、结构以及如何获取单个数据样本。DataLoader:负责从D
- 机器学习中输入输出Tokens的概念详解
爱吃土豆的程序员
机器学习基础机器学习人工智能Tokens
随着深度学习技术的快速发展,大语言模型(LargeLanguageModels,LLMs)已经成为自然语言处理(NLP)领域的一个热点研究方向。这些模型不仅能够生成高质量的文本,还能在多种任务中展现出卓越的表现,比如机器翻译、问答系统、文本摘要等。在大语言模型的工作流程中,Tokens的概念扮演着至关重要的角色。本文将详细介绍大语言模型如何使用Tokens,以及如何计算Tokens的数量。什么是T
- Github开源库Xpopup代码阅读
月亮下的小草屋
github开源库代码阅读android
前言很久没写点东西了,在家闲着考了个驾照,花了一个半月,中国的驾考真的是没眼看,刚拿到驾照当天就被疫情封闭在家,直接封了一个多月,人都麻了,再来一次估计直接过年了,最近刚开始干点活。Xpopup是我非常喜欢的一个Github开源库,一直在用,我在Xpopup2.x版本的时候看过一遍它的代码,现在已经更新到3.x版本了,这两天也没啥事,又重新看了一遍,Xpopup的代码还是很容易阅读的,有兴趣的话可
- Linux如何查询文件及文件夹大小
大数据侠客
操作系统相关linux
查看当前目录下各文件、文件夹的大小,这个比较实用du-h-max-depth=1*查询当前目录总大小du-sh3.最大文件夹倒叙和正序du-s*|sort-rn从小到大按字节排序du-sh*sort-n从小到大按字节和M排序4.最大文件夹倒排前10和后10du-sh*|sort-rn|head前面10个du-sh*|sort-rn|tail后面10个
- 情感分析任务的概述
阿你不是
python开发语言
一、情感分析的概述1、什么是情感分析情感分析,也称为情感分类,是一种自然语言处理的任务,用于分析文本、语音或其他形式的数据中所包含的情感倾向。其目标是判断数据表达的情感是积极的(Positive)、消极的(Negative)还是中立的(Neutral),或者进一步细化为更复杂的情感类别(如愤怒、喜悦、悲伤等)。2、情感分析的主要应用场景1)商业领域:情感分析主要进行产品评价分析,从客户和买家的评价
- Pytorch Dataloader入门
gy-7
pytorch深度学习机器学习
PytorchDataloadercode:torch/utils/data/dataloader.py#L71PytorchDatasettutorial:tutorials/beginner/basics/data_tutorial.html理论:在训练模型时,我们通常希望:以“mini-batch”方式传递样本,能够加速训练。每个epoch都shuffle数据,能够减少模型过拟合。使用Pyt
- 【深度学习基础】第二十四课:softmax函数的导数
x-jeff
深度学习基础深度学习人工智能
【深度学习基础】系列博客为学习Coursera上吴恩达深度学习课程所做的课程笔记。1.softmax函数softmax函数详解。2.softmax函数的导数假设神经网络输出层的激活函数为softmax函数,用以解决多分类问题。在反向传播时,就需要计算softmax函数的导数,这也就是本文着重介绍的内容。我们只需关注输出层即可,其余层和之前介绍的二分类模型一样,不再赘述。我们先考虑只有一个样本的情况
- 大模型RAG实战|混合检索:BM25检索+向量检索的LlamaIndex实现
AIGC大模型 吱屋猪
djangopython后端AI-native人工智能llama百度
ThinkRAG大模型RAG实战系列文章,带你深入探索使用LlamaIndex框架,构建本地大模型知识库问答系统。本系列涵盖知识库管理、检索优化、模型本地部署等主题,通过代码与实例,讲解如何打造生产级系统,实现本地知识库的快速检索与智能问答。本文我将介绍一种效果更好的混合检索方法,在实际问答场景中,优于向量数据库自带的混合检索功能。1什么是混合检索目前,大模型RAG系统中普遍采用混合检索来提升检索
- 基于多向量检索器的多模态RAG实现:用于表格、文本和图像
lichunericli
人工智能自然语言处理
原文地址:Multi-VectorRetrieverforRAGontables,text,andimages2023年10月20日概括跨不同数据类型(图像、文本、表格)的无缝问答是RAG追求的目标之一。我们将发布threenewcookbooks,展示在包含混合内容类型的文档上使用RAG的多向量检索器。这些cookbooks还提出了一些将多模态LLM与多向量检索器配对以解锁图像上的RAG的想法。
- redis有哪几种持久化方式
杏花春雨江南
redisredis数据库缓存
Redis提供了两种持久化方式:RDB(RedisDatabase)和AOF(Append-OnlyFile)。它们各有优缺点,适用于不同的场景。以下是它们的原理、优缺点以及如何选择的建议:1.RDB(RedisDatabase)原理:RDB是Redis的快照持久化方式。Redis会定期将内存中的数据生成一个二进制快照文件(.rdb),并保存到磁盘。可以通过配置save参数设置触发快照的条件(如s
- Hystrix 实现限流\降级\熔断
杏花春雨江南
java开发那些事儿hystrixjava开发语言
Hystrix是一个强大的库,用于处理分布式系统中的延迟和容错问题。它提供了限流、降级和熔断等功能。下面是一个完整的Java示例,展示如何使用Hystrix实现限流、降级和熔断。1.添加依赖在pom.xml中添加Hystrix的依赖:xml复制com.netflix.hystrixhystrix-core1.5.18运行HTML2.创建Hystrix命令创建一个继承自HystrixCommand的
- 【.NET 6】RabbitMQ延迟消息指南
人生短几个秋
.netcorerabbitmq.net
背景最近遇到一个比较特殊需求,需要修改一个的RabbitMQ消费者,以实现在消费某种特定的类型消息时,延迟1小时再处理,几个需要注意的点:延迟是以小时为单位不是所有消息都延迟消费,只延迟特定类型的消息只在第一次消费时延迟1小时,容错机制产生的重新消费(也即消息消费失败,多次进入延迟队列重试),则不再延迟1小时消费者消费过程中可能会重启考虑到这几点,我们需要一个标识以及持久化,不能简单使用Threa
- DIFFERENTIAL TRANSFORMER
UnknownBody
LLMDaily深度学习人工智能transformer
本文是LLM系列文章,针对《DIFFERENTIALTRANSFORMER》的翻译。差分Transformer摘要1引言2差分Transformer3实验4结论摘要Transformer倾向于将注意力过度分配到无关的上下文中。在这项工作中,我们引入了DIFFTransformer,它在消除噪声的同时增强了对相关上下文的关注。具体而言,差分注意力机制将注意力得分计算为两个单独的softmax注意力图
- AI如何创作音乐及其案例
alankuo
人工智能
AI创作音乐主要有以下几种方式:基于深度学习的生成模型深度神经网络:通过大量的音乐数据训练,让AI学习音乐的结构、旋律、和声、节奏等特征。如Transformer架构,其注意力机制可捕捉跨小节的旋律关联性,能生成具有长期依赖性的音乐序列。生成对抗网络(GAN):包含生成器和判别器,生成器负责生成音乐样本,判别器判断生成的音乐是否真实。两者相互对抗、不断优化,使生成器生成更逼真的音乐。变分自编码器(
- AI时代如何引流
alankuo
人工智能
AI时代引流可以从以下几个方面着手:利用AI精准定位与个性化营销精准客户画像:借助AI整合多维度数据,涵盖客户的年龄、性别、地理位置、消费习惯、浏览历史等,深度挖掘后绘制精准的客户画像,明确潜在客户特征与需求,让营销活动更具针对性。个性化内容创作:运用AI的自然语言处理功能,依据客户特点和需求生成个性化的营销内容,如广告文案、产品推荐等。以电商平台为例,可针对不同用户生成符合其喜好的商品推荐文案。
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&