基于STM32驱动SG90舵机

1.舵机介绍

这边对SG90舵机进行一个简短的文字介绍:

舵机的控制一般需要一个20ms左右的时基脉冲,该脉冲的高电平部分一般为0.5ms-2.5ms范围,总间隔为2ms。脉冲的宽度将决定马达转动的距离。例如:1.5毫秒的脉冲,电机将转向90度的位置(通常称为中立位置,对于180°舵机来说,就是90°位置)。如果脉冲宽度小于1.5毫秒,那么电机轴向朝向0度方向。如果脉冲宽度大于1.5毫秒,轴向就朝向180度方向。以180度舵机为例,对应的控制关系是这样的:

0.5ms————-0度;

1.0ms————45度;

1.5ms————90度;

2.0ms———–135度;

2.5ms———–180度;

2.程序框架

程序由bsp_config.h/c文件,bsp_advancetime1.h/c文件,main.c构成

bsp_config文件包含一个头文件与延时和位操作等程序。

bsp_advancetime1文件就是对高级定时器1的定义与PWM波产生程序的书写还有对GPIO引脚的初始化。

main.c函数不用多说

3.bsp_config.h与.c文件

#ifndef BSP_CONFIG_H
#define BSP_CONFIG_H

#include "stm32f10x.h"

//位带宏定义
#define BITBAND(addr, bitnum)   ((addr&0xF0000000) + 0x2000000 + ((addr&0xFFFFF)<<5) + (bitnum<<2))
#define MEM_ADDR(addr)          *((volatile unsigned long  *)(addr))
#define BIT_ADDR(addr, bitnum)  MEM_ADDR(BITBAND(addr, bitnum))

//IO口地址位带映射
#define GPIOA_ODR_Addr    (GPIOA_BASE+12) //GPIOA输出数据寄存器地址0x4001080C
#define GPIOB_ODR_Addr    (GPIOB_BASE+12) //GPIOB输出数据寄存器地址0x40010C0C
#define GPIOC_ODR_Addr    (GPIOC_BASE+12) //GPIOC输出数据寄存器地址0x4001100C
#define GPIOD_ODR_Addr    (GPIOD_BASE+12) //GPIOD输出数据寄存器地址0x4001140C
#define GPIOE_ODR_Addr    (GPIOE_BASE+12) //GPIOE输出数据寄存器地址0x4001180C
#define GPIOF_ODR_Addr    (GPIOF_BASE+12) //GPIOF输出数据寄存器地址0x40011A0C
#define GPIOG_ODR_Addr    (GPIOG_BASE+12) //GPIOG输出数据寄存器地址0x40011E0C

#define GPIOA_IDR_Addr    (GPIOA_BASE+8) //GPIOA输入数据寄存器地址0x40010808
#define GPIOB_IDR_Addr    (GPIOB_BASE+8) //GPIOB输入数据寄存器地址0x40010C08
#define GPIOC_IDR_Addr    (GPIOC_BASE+8) //GPIOC输入数据寄存器地址0x40011008
#define GPIOD_IDR_Addr    (GPIOD_BASE+8) //GPIOD输入数据寄存器地址0x40011408
#define GPIOE_IDR_Addr    (GPIOE_BASE+8) //GPIOE输入数据寄存器地址0x40011808
#define GPIOF_IDR_Addr    (GPIOF_BASE+8) //GPIOF输入数据寄存器地址0x40011A08
#define GPIOG_IDR_Addr    (GPIOG_BASE+8) //GPIOG输入数据寄存器地址0x40011E08

//单个IO口位带操作
#define PA_OUT(n)   BIT_ADDR(GPIOA_ODR_Addr,n)  //PAx输出
#define PA_IN(n)    BIT_ADDR(GPIOA_IDR_Addr,n)  //PAx输入

#define PB_OUT(n)   BIT_ADDR(GPIOB_ODR_Addr,n)  //PBx输出
#define PB_IN(n)    BIT_ADDR(GPIOB_IDR_Addr,n)  //PBx输入

#define PC_OUT(n)   BIT_ADDR(GPIOC_ODR_Addr,n)  //PCx输出
#define PC_IN(n)    BIT_ADDR(GPIOC_IDR_Addr,n)  //PCx输入

#define PD_OUT(n)   BIT_ADDR(GPIOD_ODR_Addr,n)  //PDx输出
#define PD_IN(n)    BIT_ADDR(GPIOD_IDR_Addr,n)  //PDx输入

#define PE_OUT(n)   BIT_ADDR(GPIOE_ODR_Addr,n)  //PEx输出
#define PE_IN(n)    BIT_ADDR(GPIOE_IDR_Addr,n)  //PEx输入

#define PF_OUT(n)   BIT_ADDR(GPIOF_ODR_Addr,n)  //PFx输出
#define PF_IN(n)    BIT_ADDR(GPIOF_IDR_Addr,n)  //PFx输入

#define PG_OUT(n)   BIT_ADDR(GPIOG_ODR_Addr,n)  //PGx输出
#define PG_IN(n)    BIT_ADDR(GPIOG_IDR_Addr,n)  //PGx输入



void delay_us(uint16_t us);
void delay_ms(uint16_t ms);

#endif
#include "bsp_config.h"


void delay_Quality_us(void)
{
	__ASM("nop");
	__ASM("nop");
	__ASM("nop");
	__ASM("nop");
	__ASM("nop");
	__ASM("nop");
	__ASM("nop");
	__ASM("nop");
}

void delay_us(uint16_t us)
{
	while(us--)
	{
		delay_Quality_us();
		delay_Quality_us();
		delay_Quality_us();
		delay_Quality_us();
	}
}

void delay_ms(uint16_t ms)
{
	while(ms--)
	{
		delay_us(1000);
	}
}

4.bsp_advancetime1.h与.c文件

#ifndef BSP_ADVANCETIMER_H
#define BSP_ADVANCETIMER_H

#include "bsp_config.h"

void TIME1Init(uint16_t arr, uint16_t psc);
void servo_angle(uint16_t angle);
	
#endif
#include "bsp_advancetimer1.h"

void TIME1Init(uint16_t arr, uint16_t psc)
{
	GPIO_InitTypeDef         GPIO_InitStructure;
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	TIM_OCInitTypeDef        TIM_OCInitStructure;
 
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); 
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);                                	
 
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; 
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	TIM_TimeBaseStructure.TIM_Period = arr-1; 
	TIM_TimeBaseStructure.TIM_Prescaler = psc-1; 
	TIM_TimeBaseStructure.TIM_ClockDivision = 0; 
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  
	TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
 
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; 
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; 
	TIM_OCInitStructure.TIM_Pulse = 0; 
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; 
	TIM_OC1Init(TIM1, &TIM_OCInitStructure);  
 
	TIM_CtrlPWMOutputs(TIM1,ENABLE);	
	
	TIM_Cmd(TIM1, ENABLE); 
}

void servo_angle(uint16_t angle)
{
	uint16_t pluse; 
	if(angle <= 5)    angle = 5;
	if(angle >= 175)  angle = 175;
	//为90°时pluse等于1500us=1.5ms即转90度
	pluse = (uint16_t)((50 + angle * 100/90.0)*10);
	TIM_SetCompare1(TIM1, pluse);
  
}

5.main.c文件

#include "bsp_config.h"
#include "bsp_advancetimer1.h"

int main(void)
{
    uint8_t i;
	//20000/(72M/72)=20ms
    TIME1Init(20000,72);//(72M/72)=1us加一次,这个需要细品一下和舵机计算角度有关,一个周期为20ms
	while(1)
	{
		servo_angle(170);
	    delay_ms(1000);
        servo_angle(30);
		delay_ms(1000);
	}
}

6.结束

如果要使用PWM2来产生PWM信号的话

TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;

TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

需要对这两行程序进行修改

PWM1->PWM2

HIGN->LOW

你可能感兴趣的:(STM32,arm,单片机,stm32,mcu,嵌入式硬件)