ConcurrentHashMap (jdk1.7)源码学习

一.介绍

1.Segment(分段锁)

1.1 Segment

  • 容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效的提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术
  • 分段锁其实是一种锁的设计,并不是具体的一种锁,对于ConcurrentHashMap而言,其并发的实现就是通过分段锁的形式来实现高效的并发操作。
  • Segment 类继承于 ReentrantLock 类

ConcurrentHashMap (jdk1.7)源码学习_第1张图片

  • 如图,ConcurrentHashMap定位一个元素的过程需要进行两次Hash操作。
    第一次Hash定位到Segment,第二次Hash定位到元素所在的链表的头部

    • 坏处

      这一种结构的带来的副作用是Hash的过程要比普通的HashMap要

    • 好处

      写操作的时候可以只对元素所在的Segment进行加锁即可,不会影响到其他的Segment,这样,在最理想的情况下,ConcurrentHashMap可以最高同时支持Segment数量大小的写操作(刚好这些写操作都非常平均地分布在所有的Segment上)。

  • 注:

    • 当需要put元素的时候,并不是对整个hashmap进行加锁,而是先通过hashcode来知道他要放哪一个分段中,然后对分段加锁,所以当多线程put的时候,只要不是放在一个分段这种,就实现了真正的并行插入
  • 但是,在统计size的时候,可就是获取hashmap全局信息的时候,就可能需要获取所有的分段锁才能统计。

    • 其中并发级别控制了Segment的个数,在一个ConcurrentHashMap创建后Segment的个数是不能变的,扩容过程过改变的是每个Segment的大小。

1.2 ReentrantLock

  • lock拿不到锁会一直等待。tryLock是去尝试,拿不到就返回false,拿到返回true。

    tryLock是可以被打断的,被中断 的,lock是不可以。

2.数据结构

在JDK1.7版本中,ConcurrentHashMap的数据结构是由一个Segment数组和多个HashEntry组成,如1.中图所示

3.CocurrentHashMap和HashMap异同

3.1 相同点:

  • 都实现了 Map 接口,继承了 AbstractMap 抽象类
  • jdk1.7都是数组 + 链表 ,1.8变成了数组 + 链表 + 红黑树

3.2 不同点

  • HashMap不支持并发操作,没有同步方法

4.CocurrentHashMap和HashTable的对比

  • Hashtable它把所有方法都加上synchronized关键字来实现线程安全。所有的方法都同步这样造成多个线程访问效率特别低。

  • HashTable的锁加在整个Hash表上,而ConcurrentHashMap将锁加在segment上(每个段上)

二.源码部分

1.基本属性

AbstractMap 是 Map 接口的的实现类之一,也是 HashMap, TreeMap, ConcurrentHashMap 等类的父类。

ConcurrentMap它是一个接口,是一个能够支持并发访问的java.util.map集合

Serializable :一个对象序列化的接口,一个类只有实现了Serializable接口,它的对象才能被序列化

1.1常用常量

public class ConcurrentHashMap extends AbstractMap
        implements ConcurrentMap, Serializable {
    //serialVersionUID 用来表明实现序列化类的不同版本间的兼容性
    private static final long serialVersionUID = 7249069246763182397L;
    /**
     * The default initial capacity for this table,该表的默认初始容量
     * used when not otherwise specified in a constructor.在构造函数中未指定时使用
     */
    static final int DEFAULT_INITIAL_CAPACITY = 16;

    /**
     * The default load factor for this table, used when not otherwise specified in a constructor.
     * 该表的默认加载因子,在构造函数中未指定时使用。
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * The default concurrency level for this table, used when not otherwise specified in a constructor.
     * 此表的默认并发级别,在构造函数中未指定时使用。
     */
    static final int DEFAULT_CONCURRENCY_LEVEL = 16;

    /**
     * The maximum capacity, used if a higher value is implicitly specified by either of the constructors with arguments.  MUST
     * be a power of two <= 1<<30 to ensure that entries are indexable
     * using ints.
     * 最大容量
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The minimum capacity for per-segment tables.  Must be a power
     * of two, at least two to avoid immediate resizing on next use
     * after lazy construction.
     * 每个段表的最小容量。必须是2的幂,至少为2,以避免在延迟构造后再次使用时立即调整大小。
     */
    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;

    /**
     * The maximum number of segments to allow; used to bound
     * constructor arguments. Must be power of two less than 1 << 24.
     * 允许的最大段数;用于绑定构造函数参数。
     */
    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative

    /**
     * Number of unsynchronized retries in size and containsValue
     * methods before resorting to locking. This is used to avoid
     * unbounded retries if tables undergo continuous modification
     * which would make it impossible to obtain an accurate result.
     * 在使用锁定之前,在size和containsValue方法上的未同步重试次数。如果表经历了连续的修改,从而无法获得准确的结果,这可以用来避免无边界重试。
     * 在size方法和containsValue方法,会优先采用乐观的方式不加锁,直到重试次数达到2,才会对所有Segment加锁
     * 这个值的设定,是为了避免无限次的重试。后边size方法会详讲怎么实现乐观机制的。
     */
    static final int RETRIES_BEFORE_LOCK = 2;

/**
 * Mask value for indexing into segments. The upper bits of a key's hash code are used to choose the segment.
 * 用于索引段的掩码值,用于根据元素的hash值定位所在的 Segment 下标
 */
final int segmentMask;

/**
 * Shift value for indexing within segments.
 * 在段内索引的移位值
 */
final int segmentShift;

/**
 * The segments, each of which is a specialized hash table.
 *  Segment 组成的数组,每一个 Segment 都可以看做是一个特殊的 HashMap
 */
final Segment[] segments;

1.2内部类

/**
 * ConcurrentHashMap list entry. Note that this is never exported out as a user-visible Map.Entry.
 * ConcurrentHashMap列表条目。注意,这永远不会导出为用户可见的Map.Entry。
 * HashEntry,存在于每个Segment中,它就类似于HashMap中的Node,用于存储键值对的具体数据和维护单向链表的关系
 */
static final class HashEntry {
    final int hash;
    final K key;
    //value和next都用 volatile 修饰,用于保证内存可见性和禁止指令重排序
    volatile V value;
    volatile HashEntry next;

    HashEntry(int hash, K key, V value, HashEntry next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
static final class Segment extends ReentrantLock implements Serializable {
        private static final long serialVersionUID = 2249069246763182397L;

        /**
         * The maximum number of times to tryLock in a prescan before possibly blocking on acquire in preparation for a locked
         * segment operation. On multiprocessors, using a bounded
         * number of retries maintains cache acquired while locating
         * nodes.
         * 在为锁定段操作做准备而可能阻塞之前,在预扫描中尝试lock的最大次数。在多处理器上,使用有限的重试次数来维护在定位节点时获取的缓存。
         */
        static final int MAX_SCAN_RETRIES =
            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;

        /**
         * The per-segment table. Elements are accessed via
         * entryAt/setEntryAt providing volatile semantics.
         * 每个segment中的键值对数组
         */
        transient volatile HashEntry[] table;

        /**
         * The number of elements. Accessed only either within locks
         * or among other volatile reads that maintain visibility.
         * Segment中的元素个数
         */
        transient int count;

        /**
         * The total number of mutative operations in this segment.
         * Even though this may overflows 32 bits, it provides
         * sufficient accuracy for stability checks in CHM isEmpty()
         * and size() methods.  Accessed only either within locks or
         * among other volatile reads that maintain visibility.
         * 每次 table 结构修改时,modCount增加1
         */
        transient int modCount;

        /**
         * The table is rehashed when its size exceeds this threshold.
         * 当表的大小超过这个阈值时,表将被重新散列。
         * (The value of this field is always (int)(capacity *
         * loadFactor).)
         * segment扩容的阈值
         */
        transient int threshold;

        /**
         * The load factor for the hash table.  Even though this value
         * is same for all segments, it is replicated to avoid needing
         * links to outer object.
         * @serial
         * 加载因子
         */
        final float loadFactor;
         //构造函数
        Segment(float lf, int threshold, HashEntry[] tab) {
            this.loadFactor = lf;
            this.threshold = threshold;
            this.table = tab;
        }

ConcurrentHashMap (jdk1.7)源码学习_第2张图片

2.构造函数

/**
 * Creates a new, empty map with a default initial capacity (16),
 * load factor (0.75) and concurrencyLevel (16).
 * 创建一个新的空映射,具有默认的初始容量(16),负载因子(0.75)和并发级别(16)。
 */
public ConcurrentHashMap() {
    this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
}
/**
 * Creates a new, empty map with the specified initial capacity,
 * and with default load factor (0.75) and concurrencyLevel (16).
 * 使用指定的初始容量创建一个新的空映射,以及默认的负载因子(0.75)和并发级别(16)。
 * @param initialCapacity the initial capacity. The implementation
 * performs internal sizing to accommodate this many elements.
 * @throws IllegalArgumentException if the initial capacity of
 * elements is negative.
 */
public ConcurrentHashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
}
/**
 * Creates a new, empty map with the specified initial capacity
 * and load factor and with the default concurrencyLevel (16).
 * 使用指定的初始容量,负载因子和默认的concurrencyLevel (16)创建一个新的空映射
 * @param initialCapacity The implementation performs internal
 * sizing to accommodate this many elements.
 * @param loadFactor  the load factor threshold, used to control resizing.
 * Resizing may be performed when the average number of elements per
 * bin exceeds this threshold.
 * @throws IllegalArgumentException if the initial capacity of
 * elements is negative or the load factor is nonpositive
 *
 * @since 1.6
 */
public ConcurrentHashMap(int initialCapacity, float loadFactor) {
    this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
}
/**
 * Creates a new map with the same mappings as the given map.
 * 使用与给定映射相同的映射创建一个新映射。
 * The map is created with a capacity of 1.5 times the number
 * of mappings in the given map or 16 (whichever is greater),
 * and a default load factor (0.75) and concurrencyLevel (16).
 * 容量为原map * 1.5倍 和 16 中大的那个,加载因子为0.75,concurrencyLevel为16
 * @param m the map
 */
public ConcurrentHashMap(Map m) {
    //构建新的table
    this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                  DEFAULT_INITIAL_CAPACITY),
         DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    //将原映射put进去
    putAll(m);
}
/**
 * Creates a new, empty map with the specified initial capacity, load factor and concurrency level.
 * 使用指定的初始容量、负载因子和并发级别创建一个新的空映射。
 * 所有的构造函数最终都会调用这个构造函数
 * @param initialCapacity the initial capacity. The implementation
 * performs internal sizing to accommodate this many elements.
 * @param loadFactor  the load factor threshold, used to control resizing.
 * Resizing may be performed when the average number of elements per
 * bin exceeds this threshold.
 * @param concurrencyLevel the estimated number of concurrently
 * updating threads. The implementation performs internal sizing
 * to try to accommodate this many threads.
 * @throws IllegalArgumentException if the initial capacity is
 * negative or the load factor or concurrencyLevel are
 * nonpositive.
 */
@SuppressWarnings("unchecked")
public ConcurrentHashMap(int initialCapacity,
                         float loadFactor, int concurrencyLevel) {
    //如果加载因子<=0,初始容量为负,并发级别<=0,则抛出异常
    if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
        throw new IllegalArgumentException();
    //并发级别不能大于16
    if (concurrencyLevel > MAX_SEGMENTS)
        concurrencyLevel = MAX_SEGMENTS;
    // Find power-of-two sizes best matching arguments 找到2次幂大小的最佳匹配参数
    //偏移量
    //默认concurrencyLevel = 16, 所以ssize在默认情况下也是16,此时 sshift = 4
    int sshift = 0;
    //segmen的大小
    int ssize = 1;
    //找到>concurrencyLevel的最小2次幂
    //sshift相当于ssize从1向左移的次数
    while (ssize < concurrencyLevel) {
        ++sshift;
        ssize <<= 1;
    }
    //段偏移量,默认值28
    this.segmentShift = 32 - sshift;
    //掩码
    this.segmentMask = ssize - 1;
    //对初始容量再进行判断
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    //计算一个segment中数组的数量
    int c = initialCapacity / ssize;
    //向上取整
    if (c * ssize < initialCapacity)
        ++c;
    //最小分段为2
    int cap = MIN_SEGMENT_TABLE_CAPACITY;
    //同样地,将segment容量取到大于实际需要的最小2次幂
    while (cap < c)
        cap <<= 1;
    // create segments and segments[0]
    //创建segment数组,并初始化segmen[0]
    Segment s0 =
        new Segment(loadFactor, (int)(cap * loadFactor),
                         (HashEntry[])new HashEntry[cap]);
    //创建ssize大小的数组
    Segment[] ss = (Segment[])new Segment[ssize];
//将obj对象的偏移量为offset的位置修改为value,因为Java中没有内存操作,而Unsafe的这个操作正好补充了内存操作的不足。也可以用于数组操作,比如ConcurrentHashMap中就大量用到了该操作
    UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
    this.segments = ss;
}

3. put()

/**
 * Maps the specified key to the specified value in this table.
 * 将指定的键映射到该表中的指定值。
 * Neither the key nor the value can be null.
 * 键和值都不能为空。
 * 

The value can be retrieved by calling the get method * with a key that is equal to the original key. * 可以通过调用get方法检索该值,该方法具有与原始键相等的键 * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with key, or * null if there was no mapping for key * @throws NullPointerException if the specified key or value is null */ //告诉编译器忽略警告。不用在编译完成后出现警告 @SuppressWarnings("unchecked") public V put(K key, V value) { Segment s; //如果指定的值为空,抛出异常 if (value == null) throw new NullPointerException(); int hash = hash(key); //一个键值对在Segment数组中下标 int j = (hash >>> segmentShift) & segmentMask; //这里是用Unsafe类的原子操作找到Segment数组中j下标的 Segment 对象 if ((s = (Segment)UNSAFE.getObject // nonvolatile; recheck (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment //返回segment类型,如果不存在则初始化 s = ensureSegment(j); //将键值对通过segment中put方法put,返回值为: return s.put(key, hash, value, false); }

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
    //这里通过tryLock尝试加锁,如果加锁成功,返回null,否则执行 scanAndLockForPut方法
    HashEntry node = tryLock() ? null :
        scanAndLockForPut(key, hash, value);
    //保存旧value
    V oldValue;
    try {
        HashEntry[] tab = table;
        //二次哈希计算,求hashentry数组下标
        int index = (tab.length - 1) & hash;
        //找到下标的头结点
        HashEntry first = entryAt(tab, index);
        //遍历操作
        for (HashEntry e = first;;) {
            //当首结点不为空的时候
            if (e != null) {
                K k;
                if ((k = e.key) == key ||
                    (e.hash == hash && key.equals(k))) {
                    oldValue = e.value;
                    if (!onlyIfAbsent) {
                        e.value = value;
                        ++modCount;
                    }
                    break;
                }
                e = e.next;
            }
            else {
                //当首结点为空,或者遍历晚时,以下
                //node值不为空时,说明调用scanAndLockForPut()方法时,遍历没有找到该节点,创建了新结点给node,“预热”
                if (node != null)
                    //直接头插法
                    node.setNext(first);
                else
                    //新建结点,头插法
                    node = new HashEntry(hash, key, value, first);
                count加1
                int c = count + 1;
                //当c大于阈值且table长度没达到最大值的时候扩容
                if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                    rehash(node);
                else
                    //否则,将结点插到数组下标为index的位置
                    setEntryAt(tab, index, node);
                //增加修改次数
                ++modCount;
                //count也++
                count = c;
                //因为没有旧的value所以设置为null
                oldValue = null;
                break;
            }
        }
    } finally {
        unlock();
    }
    //返回oldvalue
    return oldValue;
}

4.get()

/**
 * Returns the value to which the specified key is mapped,
 * or {@code null} if this map contains no mapping for the key.
 * 返回指定键映射到的值,或是null
 * 

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code key.equals(k)}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * @throws NullPointerException if the specified key is null */ public V get(Object key) { Segment s; // manually integrate access methods to reduce overhead 手动集成访问方法以减少开销 HashEntry[] tab; //计算hash值 int h = hash(key); //从主存中取出最新的结点 long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; //如果若Segment不为空,且链表也不为空,则遍历查找节点 if ((s = (Segment)UNSAFE.getObjectVolatile(segments, u)) != null && (tab = s.table) != null) { for (HashEntry e = (HashEntry) UNSAFE.getObjectVolatile (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); e != null; e = e.next) { K k; //找到结点,返回value if ((k = e.key) == key || (e.hash == h && key.equals(k))) return e.value; } } //无,返回空 return null; }

5. ensureSegment()

/**
 * Returns the segment for the given index, creating it and recording in segment table (via CAS) if not already present.
 * 返回给定索引的段,创建它并(通过CAS)在段表中记录(如果不存在)。
 * @param k the index
 * @return the segment
 */
@SuppressWarnings("unchecked")
////k为 (hash >>> segmentShift) & segmentMask 计算出的segment下标
private Segment ensureSegment(int k) {
    final Segment[] ss = this.segments;
    ////u代表 k 的偏移量,用于通过 UNSAFE 获取主内存最新的实际 K 值
    long u = (k << SSHIFT) + SBASE; // raw offset
    Segment seg;
    //从内存中取到最新的下标位置的 Segment 对象,判断是否为空
    if ((seg = (Segment)UNSAFE.getObjectVolatile(ss, u)) == null) {
        //如果为空,则按照ss[0]为原型来建造segment
        Segment proto = ss[0]; // use segment 0 as prototype
        //容量为ss[0]的长度
        int cap = proto.table.length;
        //加载因子也为ss[0]的
        float lf = proto.loadFactor;
        //算出阈值
        int threshold = (int)(cap * lf);
        //再创建Segment 对应的 HashEntry 数组
        HashEntry[] tab = (HashEntry[])new HashEntry[cap];
        if ((seg = (Segment)UNSAFE.getObjectVolatile(ss, u))
            == null) { // recheck 再次从内存中取到最新的下标位置的 Segment 对象,判断是否为空
            //创建segment对象
            Segment s = new Segment(lf, threshold, tab);
            //循环检查 u下标位置的 Segment 是否为空
            while ((seg = (Segment)UNSAFE.getObjectVolatile(ss, u))
                   == null) {
                //不为空,说明有其他线程已经创建对象,则用seg保存
                //若为空,则当前下标的Segment对象为空,就把它替换为最新创建出来的 s 对象
                if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
                    break;
            }
        }
    }
    //返回segment
    return seg;
}

6.scanAndLockForPut()

/**
 * Scans for a node containing given key while trying to
 * acquire lock, creating and returning one if not found. Upon
 * return, guarantees that lock is held. UNlike in most
 * methods, calls to method equals are not screened: Since
 * traversal speed doesn't matter, we might as well help warm
 * up the associated code and accesses as well.
 * put()方法第一步抢锁失败之后,就会执行此方法
 * @return a new node if key not found, else null
 */
private HashEntry scanAndLockForPut(K key, int hash, V value) {
    //找到HashEntry数组的下标的首结点
    HashEntry first = entryForHash(this, hash);
    HashEntry e = first;
    HashEntry node = null;
    //初始化重试次数,为-1
    int retries = -1; // negative while locating node
    //一直尝试抢锁
    while (!tryLock()) {
        HashEntry f; // to recheck first below
        //
        if (retries < 0) {
            //首结点为空,预先创建一个新的结点,在hashentry数组上,retries++
            if (e == null) {
                if (node == null) // speculatively create node
                    node = new HashEntry(hash, key, value, null);
                retries = 0;
            }
            //如果first有值,并且相对应,则也把retries = 0
            else if (key.equals(e.key))
                retries = 0;
            else
                //不对应的话,就从判断语句开始
            //同样的如果空,就新建结点,否则找到该结点,最后retries = 0
                e = e.next;
        }
        else if (++retries > MAX_SCAN_RETRIES) {
            //lock拿不到锁会一直等待。tryLock是去尝试,拿不到就返回false,拿到返回true。
            lock();
            break;
        }
        //retries为偶数的时候&1为0,检查在这段时间内first结点是否有改变
        else if ((retries & 1) == 0 &&
                 (f = entryForHash(this, hash)) != first) {
            e = first = f; // re-traverse if entry changed如果条目改变了,重新遍历
            retries = -1;
        }
    }
    return node;
}
  • scanAndLockForPut 这个方法可以确保返回时,当前线程一定是获取到锁的状态。

7.rehash()

  • 当 put 方法时,发现元素个数超过了阈值,则会扩容

  • 但是segment互相之间并不影响

/**
 * Doubles size of table and repacks entries, also adding the given node to new table
 * 将表的大小增加一倍并重新打包条目,还将给定节点添加到新表中
 */
@SuppressWarnings("unchecked")
private void rehash(HashEntry node) {
    /*
     * Reclassify nodes in each list to new table.  Because we
     * are using power-of-two expansion, the elements from
     * each bin must either stay at same index, or move with a
     * power of two offset. We eliminate unnecessary node
     * creation by catching cases where old nodes can be
     * reused because their next fields won't change.
     * Statistically, at the default threshold, only about
     * one-sixth of them need cloning when a table
     * doubles. The nodes they replace will be garbage
     * collectable as soon as they are no longer referenced by
     * any reader thread that may be in the midst of
     * concurrently traversing table. Entry accesses use plain
     * array indexing because they are followed by volatile
     * table write.
     */
    HashEntry[] oldTable = table;
    //oldCapacity为原表的长度
    int oldCapacity = oldTable.length;
    //新容量为原来的2倍
    int newCapacity = oldCapacity << 1;
    //再计算新的阈值
    threshold = (int)(newCapacity * loadFactor);
    //创建新容量的hashentry
    HashEntry[] newTable =
        (HashEntry[]) new HashEntry[newCapacity];
    //哈希表大小掩码 用于计算索引值
    int sizeMask = newCapacity - 1;
    //遍历原表
    for (int i = 0; i < oldCapacity ; i++) {
        //// e 为链表的第一个结点
        HashEntry e = oldTable[i];
        //如果首结点不为空
        if (e != null) {
            //保存e的next结点
            HashEntry next = e.next;
            //重新计算e的index
            int idx = e.hash & sizeMask;
            //如果next为null,说明此位置没发生哈希冲突,直接将e插入
            if (next == null)   //  Single node on list
                newTable[idx] = e;
            else { // Reuse consecutive sequence at same slot 重复使用同一槽位的连续序列
                HashEntry lastRun = e;
                int lastIdx = idx;
                //遍历列表
                for (HashEntry last = next;
                     last != null;
                     last = last.next) {
                    //计算当前遍历到的节点的新下标
                    int k = last.hash & sizeMask;
                    //若 k 不等于 lastIdx,则把last更新
                    if (k != lastIdx) {
                        lastIdx = k;
                        lastRun = last;
                    }
                }
                //新表的lastidx位置放入和lastrun index相同的结点
                newTable[lastIdx] = lastRun;
                // Clone remaining nodes 克隆剩余节点
                for (HashEntry p = e; p != lastRun; p = p.next) {
                    //通过遍历建立新结点的方式
                    V v = p.value;
                    int h = p.hash;
                    int k = h & sizeMask;
                    HashEntry n = newTable[k];
                    newTable[k] = new HashEntry(h, p.key, v, n);
                }
            }
        }
    }
    //添加新节点,put方法传入的结点
    int nodeIndex = node.hash & sizeMask; // add the new node
    node.setNext(newTable[nodeIndex]);
    newTable[nodeIndex] = node;
    table = newTable;
}

ConcurrentHashMap (jdk1.7)源码学习_第3张图片

8.remove()

/**
 * Remove; match on key only if value null, else match both.
 */
final V remove(Object key, int hash, Object value) {
    //抢锁
    if (!tryLock())
        scanAndLock(key, hash);
    V oldValue = null;
    try {
        HashEntry[] tab = table;
        //找到哈希表对应下标的头结点
        int index = (tab.length - 1) & hash;
        HashEntry e = entryAt(tab, index);
        HashEntry pred = null;
        //如果首结点不为null
        while (e != null) {
            K k;
            //记录next
            HashEntry next = e.next;
            if ((k = e.key) == key ||
                (e.hash == hash && key.equals(k))) {
                V v = e.value;
                if (value == null || value == v || value.equals(v)) {
                    if (pred == null)
                    /**
                     * static final  void setEntryAt(HashEntry[] tab, int i,
                     *                                        HashEntry e) {
                     *                      UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
                     *  putOrderedObject: 将这个方法名拆成 put ordered Object
                     */
                        setEntryAt(tab, index, next);
                    else
                        pred.setNext(next);
                    ++modCount;
                    --count;
                    oldValue = v;
                }
                break;
                //用的Unsafe的方法直接替换数组对应的值(此时的数组对应的空,所以可以直接插入),然后就是解锁,返回旧的值了。
            }
            pred = e;
            e = next;
        }
    } finally {
        unlock();
    }
    return oldValue;
}

9.size()

/**
 * Returns the number of key-value mappings in this map.
 * 返回此映射中的键-值映射的数量。
 * If the map contains more than Integer.MAX_VALUE elements, returns
 * Integer.MAX_VALUE.
 *
 * @return the number of key-value mappings in this map
 */
public int size() {
    // Try a few times to get accurate count. On failure due to
    // continuous async changes in table, resort to locking.
    //试几次,得到准确的数字。如果由于表中的连续异步更改而导致失败,则使用锁定。
    final Segment[] segments = this.segments;
    int size;
    boolean overflow; // true if size overflows 32 bits
    long sum;         // sum of modCounts 的和
    long last = 0L;   // previous sum
    int retries = -1; // first iteration isn't retry 重试次数
    try {
        for (;;) {
            //如果超过重试次数,则不再重试,而是把所有Segment都加锁,再统计 size
            if (retries++ == RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j)
                    ensureSegment(j).lock(); // force creation
            }
            sum = 0L;
            size = 0;
            overflow = false;
            //遍历所有Segment
            //先不都锁上,每个段统计count,并记录modcount
            //最后如果modcount不相等,则重新循环,直到超出最大重试次数
            //则强制锁上所有segment,然后统计次数返回
            for (int j = 0; j < segments.length; ++j) {
                Segment seg = segmentAt(segments, j);
                if (seg != null) {
                    sum += seg.modCount;
                    int c = seg.count;
                    if (c < 0 || (size += c) < 0)
                        overflow = true;
                }
            }
            if (sum == last)
                break;
            last = sum;
        }
    } finally {
        if (retries > RETRIES_BEFORE_LOCK) {
            for (int j = 0; j < segments.length; ++j)
                segmentAt(segments, j).unlock();
        }
    }
    return overflow ? Integer.MAX_VALUE : size;
}

三.总结

1. ConcurrentHashMap中变量使用final和volatile修饰有什么用呢?

  • final :HashEntry里面除了value值不是final修饰的,其他都被final修饰了,所以在HashEntry链表里面添加HashEntry的时候,只能添加到头节点,不能添加到尾节点,因为HashEntry里面的next值是被final修饰的,不能修改。

  • volatile:来保证某个变量内存的改变对其他线程即时可见,在配合CAS可以实现不加锁对并发操作的支持。

    如:get操作可以无锁是由于Node的元素val和指针next是用volatile修饰的,在多线程环境下线程A修改结点的val或者新增节点的时候是对线程B可见的

2. 什么是哈希算法?

  • 是一种将任意内容的输入转换成相同长度输出的加密方式,其输出被称为哈希值。

3. 为什么用两次hash?

  • 构造分离锁,操作的时候不会锁住整个表,提高并发能力

4. hashmap在多线程下的隐患是什么?可以用用什么代替

  • jdk1.7版本存在put操作时存在丢失数据的情况

    jdk1.8版本虽然解决了死循环问题,但是也有数据覆盖问题

  • 可用ConcurrentHashMap代替HashMap

5. 并发问题分析

ConcurrentHashMap的get操作时候,新增,修改,删除都是要考虑并发问题的

。。。

6. segmentShift、segmentMask、sshift、ssize和SBASE关系

  • 一个键值对在Segment数组中下标为:

    (hash >>> segmentShift) & segmentMask

  • 其中,

    • segmentShift = 32 - sshift
    • segmentMask = ssize - 1
    • 其中,
      • 2^sshif=ssize
      • ssize为concurrencyLevel的最小2次幂

你可能感兴趣的:(ConcurrentHashMap (jdk1.7)源码学习)