机械设计过程中,机械都是由许多构件组成。任一构件都是由某种材料制成,构件在荷载作用下会发生形状和尺寸的变化,即产生变形,同时在构件内部产生一种抵抗变形的内力。随着荷载的增加,构件的变形和内力也增大,当荷载大到一定程度时,构件会丧失工作能力。为了保持结构的正常工作,必须让构件达到强度和刚度的要求。在实际设计中,由大量的实践得出能满足刚度要求的零件,通常其强度总是足够的。本文为了探究这条经验结论的理论性,对相关资料进行论述。
1、强度
1.1 定义
强度是指材料在外力作用下抵抗破坏的能力。
1.2 破坏类型
对于构件在外力下的破坏有两种基本形式:
(1)脆性断裂:在没有明显的塑形变形情况下发生的突然断裂,如铸铁试件在拉伸时沿横截面的断裂和圆截面铸铁试件在扭转时沿斜截面的断裂。
(2)塑形屈服:材料产生显著的塑形变形而使构件丧失工作能力,如低碳钢试样在拉伸或扭转时都会发生显著的塑形变形。
1.3 强度理论
根据破坏类型可以采用判断推理的方法得出以下四条强度理论:
(1)最大拉应力理论:
只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。σb/s=[σ],所以按第一强度理论建立的强度条件为:σ1≤[σ]。
(2)最大拉应变理论:
只要最大拉应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。εu=σb/E;ε1=σb/E。由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E,所以σ1-u(σ2+σ3)=σb。按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
(3)最大切应力理论:
只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。τmax=τ0。依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。所以破坏条件改写为σ1-σ3=σs。按第三强度理论的强度条件为:σ1-σ3≤[σ]。
(4)形状改变比能理论:
只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。发生塑性破坏的条件,所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]。
2、 刚度
2.1 定义
刚度是指零件在载荷作用下抵抗弹性变形的能力。
2.2 不同类型的刚度
当所作用的载荷是恒定载荷时称为静刚度;为交变载荷时则称为动刚度。静刚度主要包括结构刚度和接触刚度。结构刚度即指构件自身的刚度,主要有弯曲刚度和扭转刚度。
弯曲刚度按下式计算:
式中 P——静载荷(N);
δ——在载荷方向的弹性变形(μm)。
扭转刚度按下式计算:
式中 M——作用的扭矩(N·m);
L——扭矩作用处到固定端的距离(m);
θ——扭转角(°)。
3、 关系论证
通过对上述关于强度和刚度的理论理解,相对于刚度,强度的定义针对的是外力作用下的破坏,而破坏类型的分类为塑形屈服及脆性断裂,由此联想到拉伸时的应力应变曲线。如图1-1所示。
图中曲线可分为四个阶段:I、弹性变形阶段;II、屈服阶段;III、强化阶段;IV、局部颈缩阶段。而刚度的定义是在于抵抗弹性变形,是在第一阶段下进行的,弹性作用下满足胡克定律,观察静载荷下弯曲刚度与扭转刚度的计算公式,类似于胡克定律,可推测刚度的测量仅仅在弹性变形阶段进行。
在进入下一阶段后,对于拉伸过程中塑形应变火残余应变不会消失,在应力应变曲线下,应力几乎不变,而应变显著增加,此时应力为屈服极限。且对于材料则进入了塑形屈服的
破坏阶段,在进入强化阶段后,应变随应力的增加而增加,最后到达强度极限。由此可见关于强度的测量是在于材料弹性形变之后而强度极限之前。
综上,可得出刚度与强度都是在对于零件失效阶段的测量值,而刚度可以依靠应力来测量,强度可以依靠变形来测量,在应变过程中刚度在前一阶段而强度在后阶段,所以在零件失效的条件测量中,只要满足了刚度要求,在弹性变形阶段就可以抵抗足够的应力,而强度在这样的前提下也就满足了零件的要求。按照这样的关系,才会有在实际的生产中的各类设计,例如机械设备中的轴,通常是先按强度条件确定轴的尺寸,再按刚度条件进行刚度校核。精密机械对于轴的刚度要求也就因此而设定得很高,其截面尺寸的设计往往由刚度条件控制。
4、参考文献
[1]黄小清 . 材料力学(第二版)[M].华南理工大学出版社,2010.