- Mysql-经典实战案例(10):如何用PT-Archiver完成大表的自动归档
从不删库的DBA
Mysql经典实战案例mysql数据库
真实痛点:电商订单表存储优化场景现状分析某电商平台订单表(order_info)每月新增500万条记录主库:高频读写,SSD存储(空间告急)历史库:HDD存储,只读查询优化目标✅自动迁移7天前的订单到历史库✅每周六23:30执行,不影响业务高峰✅确保数据一致性第一章:前期准备:沙盒实验室搭建1.1实验环境架构生产库:10.33.112.22历史库:10.30.76.41.2环境初始化(双节点执行)
- 通俗详解redis底层数据结构哈希表之渐进式rehash
八股文领域大手子
javajvm算法数据库mysqlredis
一、为什么要用渐进式rehash?假设你家的旧柜子(哈希表)装满了,需要换个大柜子。如果一次性把所有东西倒腾到新柜子,你可能得停下手头所有事,累得半死(这就是传统rehash的问题:卡顿)。Redis为了不“累死”,选择边搬边用,每次搬一点,这就是“渐进式”。二、具体怎么“搬家”?1️⃣先准备好新柜子(分配空间)•Redis会先申请一个更大的新哈希表(比如旧表两倍大),这时候系统里同时有「旧表」和
- 2. 猜数字游戏
老实人y
Rust小白初学rust开发语言后端
目录创建一个新项目处理一次猜测生成一个秘密数字使用crate来增加更多功能Cargo.lock文件确保构建是可重现的更新crate到一个新版本生成一个随机数比较猜测的数字和神秘数字使用循环来允许多次猜测猜测正确后退出处理无效输入最终代码程序会随机生成一个1到100之间的整数。接着它会提示玩家猜一个数并输入,然后指出猜测是大了还是小了。如果猜对了,它会打印祝贺信息并退出。创建一个新项目project
- 机器学习是怎么一步一步由神经网络发展到今天的Transformer架构的?
yuanpan
机器学习神经网络transformer
机器学习和神经网络的发展经历了一系列重要的架构和技术阶段。以下是更全面的总结,涵盖了从早期神经网络到卷积神经网络之前的架构演变:1.早期神经网络:感知机(Perceptron)时间:1950年代末至1960年代。背景:感知机由FrankRosenblatt提出,是第一个具有学习能力的神经网络模型。它由单层神经元组成,可以用于简单的二分类任务。特点:输入层和输出层之间直接连接,没有隐藏层。使用简单的
- 【Lua】实现面向对象
xiaoaiyu___
Lualua开发语言
面向对象面向对象的三大特性:封装、继承、多态。封装:就是把对象的属性和行为(数据)结合为一个独立的整体,并尽可能隐藏对象的内部实现细节。继承:从已有的类中派生出新的类称为子类,子类继承父类的数据属性和行为,并能根据自己的需求扩展出新的行为,可以提高代码的复用性。多态:指允许不同的对象对同一消息做出响应。即同一消息可以根据发送对象的不同而采用多种不同的行为方式(发送消息就是函数调用)。1.封装。在L
- 数字转换(dp+数论)
小崔的技术博客
算法
题意:如果一个数x的约数之和y(不包括他本身)比他本身小,那么x可以变成y,y也可以变成x。例如,4可以变为3,1可以变为7。限定所有数字变换在不超过n的正整数范围内进行,求不断进行数字变换且不出现重复数字的最多变换步数。思路:可以将每个数与能到达的数之间连一条边,这样就会形成一个森林,而题目要求的就是在森林中找一棵树的最大直径。问题转换为求树的最大直径:第一步:用筛法的变形求每个数的约数之和第二
- Lua重点:面向对象 (封装、继承、多态)
码穿地球
Lua程序设计lua
Lua重点:面向对象1,封装--面向对象类基于table来实现--面向对象的封装Object={}Object.id=1functionObject:Test()--冒号自动调用这个函数的对象(Object)作为第一个参数传入的方法print("id是"..self.id)--相当于将Test作为Object的成员方法endfunctionObject:new()localobj={}--建立一个
- 10分钟了解基金基础知识
leo_厉锵
金融栏金融
一、基金的本质股票、债券和基金具有一定的可比性,而银行理财产品较为特殊。(一)股票股票代表一个公司的股份。拥有公司股票就相当于拥有部分公司股份。股票投资收益潜力大,因为公司可能是赚钱机器从而导致股价暴涨;但风险也很高,因为公司可能经营不善致使股价暴跌。(二)债券债券代表一种债权,即借钱给别人。例如国债,可理解为国家向你借钱并打借条,约定偿还时间和利息。债券代表着债券关系。(三)基金股票和债券属于直
- Python异步编程 - asyncio库
孤寒者
Python全栈系列教程python异步编程asyncioyield协程
目录:每篇前言:异步IOPython中的异步编程实现方式:协程Python传统协程示例:实现生产者-消费者模型消费者:生产者:运行流程:整体流程:传统协程——>现代协程:asyncio库async/await每篇前言:作者介绍:【孤寒者】—CSDN全栈领域优质创作者、HDZ核心组成员、华为云享专家Python全栈领域博主、CSDN原力计划作者本文已收录于爬虫必备前端技术栈专栏:《爬虫必备前端技术栈
- 【布鲁姆6大认知层级】
搞技术的季
经验分享
认知思维目标层次由低到高、由简到繁分为六个层次,层层递进,这6个层级分别是:记忆——理解——应用——分析——评价——创新。第一层:记忆是指认识并记忆概念、知识,将其储存在大脑并及时提取,例如背单词、古诗、名词概念等。这一层次所涉及的是具体知识或抽象知识的辨认,虽然机械,但对学习和解决更复杂的问题来说是必不可少的基础环节。第二层:理解是指对事物或知识的领会,当学习者对"新"知识与原有知识产生联系时,
- 【运维的七种武器】
搞技术的季
运维
最近项目陆续增加,相应的运维方面压力逐步攀升,经常出现打包和发布失败的情况,给交付团队带来困扰。运维技术是随着软件技术的发展同步发展起来的,当前复杂的软件技术架构对运维的稳定和高效带了了很大挑战。一、运维平台发展史:1.第一阶段,以专业化网管工具为代表,包括网络设备、主机、数据库、中间件、存储等进行专业监控管理的各种专业化工具。2.第二阶段,以ITIL流程化管理为代表的综合网管,通过事件、服务、流
- Bilve 搭建手册
波格斯特
eureka云原生
从零搭建Bilive需要提前安装dockerbilive第一步dockerclitodockercompose#https://www.mklab.cn/utils/dockersudodockerrun\-itd\--namebilive_docker\-p22333:2233\ghcr.io/timerring/bilive:0.2.10version:'3.1'services:bilive
- 全面掌握Python:从安装到基础再到进阶的系统学习之路(附代码,建议新手收藏)
der丸子吱吱吱
python学习开发语言新手入门代码
Python,作为一种现代化的高级编程语言,因其简洁易懂的语法和强大的功能,成为了数据科学、人工智能、Web开发等多个领域的首选语言。在这篇文章中,我们将从大学课本的结构来详细介绍Python,帮助大家从零基础开始,逐步深入掌握Python的各个方面。目录第一章:Python简介与安装1.1Python语言概述1.2安装Python1.3Python的开发环境1.4第一个Python程序第二章:基
- 故事讲解设计模式:观察者模式
yuanpan
设计模式观察者模式
1.故事背景:在一个小镇上,有一家非常受欢迎的报纸店,老板叫老张。这家报纸店每天都会发布最新的新闻,镇上有很多居民都订阅了这家报纸,他们希望能够第一时间收到最新的消息。2.故事发展:老张的报纸店:老张是报纸店的核心,他负责收集新闻、编辑报纸,并在每天早晨发布。问题:老张需要通知所有订阅者,但订阅者数量可能很多,而且可能会随时增加或减少。订阅者们:镇上有几位居民对新闻非常感兴趣,他们是:小李:喜欢体
- 2025年中央预算内投资专项(第二批)节能降碳申报指南:方向解析、条件详解与实操攻略
卧涛西安17391873147
人工智能大数据物联网制造
核心提示:2025年中央预算内投资专项(第二批)节能降碳项目申报已进入倒计时!本文深度解析申报方向、条件、资金支持比例,并提供七大行业改造实例与申报策略,助您抢占政策红利先机。一、政策背景与申报时效2025年中央预算内投资专项(第二批)节能降碳是国家"双碳"战略落地的关键举措,旨在通过财政支持加速重点领域低碳转型。本批次申报截止日期为本月底,拟申报单位需立即启动材料准备工作。二、三大申报方向深度解
- 双指针之滑动窗口
旧念25
算法数据结构
滑动窗口是双指针的一种所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果。给定一个含有n个正整数的数组和一个正整数s,找出该数组中满足其和≥s的长度最小的连续子数组,并返回其长度。如果不存在符合条件的子数组,返回0。示例:输入:s=7,nums=[2,3,1,2,4,3]输出:2解释:子数组[4,3]是该条件下的长度最小的子数组暴力解法两层for循环嵌套,第一层for循
- GraphCube、Spark和深度学习技术赋能快消行业关键运营环节
weixin_30777913
开发语言大数据深度学习人工智能spark
在快消品(FMCG)行业,需求计划(DemandPlanning)、库存管理(InventoryManagement)和需求供应管理(DemandSupplyManagement)是影响企业整体效率和利润水平的关键运营环节。GraphCube图多维数据集技术、Spark大数据分析处理技术和深度学习技术的结合,为这些环节提供了智能化、动态化和实时化的解决方案,显著提升业务运营效率和企业利润。一、技术
- rust Send Sync 以及对象安全和对象不安全
叠叠乐
rust
开头:菜鸟小明的疑惑小明:“李哥,我最近学Rust,感觉它超级严谨,啥Send、Sync、对象安全、静态分发、动态分发的,我都搞晕了!为啥Rust要设计得这么复杂啊?”小李(笑):“别急,Rust是因为想让代码‘安全’,又‘高性能’,所以才有这么多机制。我们从头讲,慢慢来,一定搞清楚。”---第一章:线程安全是怎么做到的?Send/Sync---Send是啥?小明:“我知道线程是并发执行的,但Ru
- 第三十篇 维度建模:从理论到落地的企业级实践
随缘而动,随遇而安
数据库sql数据仓库大数据数据库架构
目录一、维度建模核心理论体系1.1Kimball方法论四大支柱1.2关键概念对比矩阵二、四步建模法全流程解析2.1选择业务过程(以电商为例)2.2声明原子粒度(订单案例)2.3维度设计规范时间维度(含财年逻辑)SCDType2完整实现(Hudi)2.4事实表类型与设计三、企业级建模实战:电商用户分析3.1业务矩阵分析3.2模型实现代码四、高级建模技巧4.1多星型模式关联4.2大数据场景优化五、性能
- 一、大语言模型微调 vs. 大语言模型应用
AI Echoes
深度学习人工智能deepseek机器学习算法
一、大语言模型微调vs.大语言模型应用1.微调(Fine-Tuning)的含义与特点定义与作用微调指在预训练好(通用)的基础模型上,通过在特定领域或任务的数据集上进一步训练来调整模型参数,使其在该领域任务中获得更优表现。这种方法可以使通用模型“定制化”,更好地理解专业术语和领域知识,从而提升准确性和响应质量。例如,为医疗、法律、金融等垂直领域构建专属模型,往往需要在预训练模型基础上进行微调。特点参
- 模型上下文协议 (MCP)是什么?Model Context Protocol 需要你了解一下
同学小张
学习AIGCAI-nativeagigpt开源协议
大家好,我是同学小张,+v:jasper_8017一起交流,持续学习AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,订阅我的大模型专栏,共同学习和进步。在人工智能领域,ModelContextProtocol(MCP)正逐渐成为连接AI模型与各类数据源及工具的重要标准。MCP究竟为何物?它又将如何改变AI应用的开发与使用?文章目录0.概念1.MCP的总体架构2.为何使用MCP?3.我的理解4
- 领域驱动设计(DDD)与MVC架构:理念对比与架构选择
以恒1
mvc架构
领域驱动设计(DDD)与MVC架构:理念对比与架构选择一、架构之争的本质:业务复杂度驱动技术演进在软件开发领域,没有银弹式的完美架构,只有适合当前业务场景的合理选择。MVC与DDD的区别本质上是业务复杂度与架构响应能力的匹配问题。让我们通过一个真实案例展开思考:案例背景某金融科技公司初期采用MVC架构开发支付系统,随着业务扩展,新增跨境支付、分账系统、风控规则等功能后,代码库逐渐演变成"大泥球"架
- Flink启动任务
swg321321
flink大数据
Flink以本地运行作为解读例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录Flink前言StreamExecutionEnvironmentLocalExecutorMiniClusterStreamGraph二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发
- 使用Nginx实现后端负载均衡
海上彼尚
node.jsnginx负载均衡运维node.js
目录引言一、负载均衡的核心作用二、基础配置三步曲1.定义后端服务器组(upstream)2.配置代理转发规则3.重载配置生效三、六大负载均衡算法详解四、高级配置技巧1.健康检查机制2.会话保持方案3.SSL终止优化五、实战场景配置案例案例1:WebSocket负载均衡案例2:多级地域分发案例3:连接池优化六、最佳实践与陷阱规避结语引言在现代高并发场景下,单一服务器难以支撑海量请求的处理。Nginx
- ollama 基本使用教程
海上彼尚
AIai前端
目录1.安装OllamamacOS或LinuxWindows(WSL2)2.基础命令启动与停止更新Ollama3.模型管理下载预训练模型运行模型查看已安装模型删除模型从Modelfile创建自定义模型4.高级功能服务器模式与API多会话管理环境变量配置5.常见问题与技巧加速模型下载查看日志模型参数调整模型导出与分享Ollama是一个开源的大型语言模型服务工具,能够帮助用户在本地运行大模型。通过简单
- 办公提效高阶 DeepSeek 提示词,适用于多种 AI 工具
东锋17
人工智能人工智能
1、高效会议管理请根据[会议主题]和[参会人角色]生成会议议程框架,包含会前准备清单(背景材料/数据需求)、会中讨论要点(需决策事项+时间分配)、会后跟进任务表(责任人/DDL),最后用思维导图形式输出。2、周报自动生成基于我本周完成的[任务清单]和[工作数据],请先总结3项核心成果与2个待改进点,再结合OKR目标制定下周工作计划,要求用对比柱状图呈现进度数据,以PPT分页形式输出。3、周报自动生
- 锥面箍接/快拆环突破!拆装效率飙升200%,终结机器人螺丝拆装时代
CodePatentMaster
机器人人工智能
颠覆性散热革新!宇树科技弹性散热架构让四足机器人稳定性提升40%核心价值杭州宇树科技通过弹性接触式散热仓盖与导流件协同设计,实现计算单元散热效率提升32%且抗冲击性能增强40%,攻克四足机器人高热工况下的核心组件易损难题[1][4]。一、技术原理深度剖析1.痛点定位:高动态场景下的散热与防护两难当前四足机器人的计算单元面临两大挑战:散热瓶颈:传统刚性固定导致接触热阻增加30%以上(见热成像对比数据
- 【新品发售】NVIDIA 发布全球最小个人 AI 超级计算机 DGX Spark
segmentfault
GTC2025大会上,NVIDIA正式推出了搭载NVIDIAGraceBlackwell平台的个人AI超级计算机——DGXSpark。赞奇可接受预订,直接私信后台即刻预订!DGXSpark(前身为ProjectDIGITS)支持AI开发者、研究人员、数据科学家和学生,在台式电脑上对大模型进行原型设计、微调和推理。用户可以在本地运行这些模型,或将其部署在NVIDIADGXCloud或任何其他加速云或
- 如何用大模型评估大模型——PAI-Judge裁判员大语言模型的实现简介
人工智能机器学习大模型llm
背景:为什么需要一个「裁判员大语言模型」?随着大模型(LLM)技术的爆发式应用,如何快速、客观评估模型回复质量成为行业痛点。对于回答客观问题的LLM,目前业内已经有比较成熟的数据集进行效果评测与模型打榜。但是如何对一个开放式生成LLM进行效果评估,尤其在知识问答、客服对话、内容合规、RAG(检索增强生成)等场景中,目前主流的评测方式仍存在一定的局限性:人工标注:成本高昂、效率低下;传统的自动化评估
- SM系列密码算法在网络空间安全中的体系化应用研究
安全
一、算法架构与技术特性解析1.1SM2椭圆曲线公钥算法基于Fp-256r1椭圆曲线构建,采用Weierstrass方程形式:y²≡x³+ax+b(modp),其核心安全参数满足:素数模p:256位大素数基域Fp上椭圆曲线阶n满足n>2^191抗MOV约化攻击特性支持高效标量乘运算优化密钥协商协议采用改进的ECMQV机制,通过两步验证实现前向安全性,计算流程包含:临时密钥对生成:(d_A,P_A)←
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多