学生表中按班级求年龄前三
dense_rank:有并列排名,依次递增 (开窗函数相当于Top-N)
select * from (
select *,dense_rank() over(partition by clazz order by age)as num from students
) as t where t.num<=3;
> 在电商、物流和银行可能经常会遇到这样的需求:统计用户连续交易的总额、连续登陆天数、连续登陆开始和结束时间、间隔天数等
##### 数据:
> 注意:每个用户每天可能会有多条记录
##### 建表语句
create table deal_tb(
id string
,datestr string
,amount string
)row format delimited fields terminated by ',';
#### 分析:
1.去重 金额求sum() group by id,datestr
2.row_number() as index
3.datestr-index
//每天的数据汇总
with datesum as(select id,datestr,sum(amount)as amount from deal_tb group by id,datestr)
,dateindex as(select *,row_number() over(partition by id order by datestr)as index from datesum)
select *
,date_sub(datestr,index)
from
dateindex;
统计用户连续交易的总额、连续登陆天数、连续登陆开始和结束时间
with datesum as(select id,datestr,sum(amount)as amount from deal_tb group by id,datestr)
,dateindex as(select *,row_number() over(partition by id order by datestr)as index from datesum)
,dateend as (select *,date_sub(datestr,index)as gp from dateindex)
select id
,gp
,count(*)
,sum(amount)
,min(datestr)
,max(datestr)
from
dateend group by id,gp ;
间隔天数
lag(col,n)往前第n行数据
with datesum as(select id,datestr,sum(amount)as amount from deal_tb group by id,datestr)
,dateindex as(select *,row_number() over(partition by id order by datestr)as index from datesum)
,dateend as (select *,date_sub(datestr,index)as gp from dateindex)
select id
,gp
,count(*)
,sum(amount)
,datediff(gp,lag(gp,1) over(partition by id order by gp))
from
dateend group by id,gp ;