C/C++中的volatile关键字和const对应,用来修饰变量,用于告诉编译器该变量值是不稳定的,可能被更改。使用volatile注意事项:
(1). 编译器会对带有volatile关键字的变量禁用优化(A volatile specifier is a hint to a compiler that an object may change its value in ways not specified by the language so that aggressive optimizations must be avoided)。
(2). 当多个线程都要用到某一个变量且该变量的值会被改变时应该用volatile声明,该关键字的作用是防止编译器优化把变量从内存装入CPU寄存器中。如果变量被装入寄存器,那么多个线程有可能有的使用内存中的变量,有的使用寄存器中的变量,这会造成程序的错误执行。volatile的意思是让编译器每次操作该变量时一定要从内存中取出,而不是使用已经存在寄存器中的值(It cannot cache the variables in register)。
(3). 中断服务程序中访问到的变量最好带上volatile。
(4). 并行设备的硬件寄存器的变量最好带上volatile。
(5). 声明的变量可以同时带有const和volatile关键字。
(6). 多个volatile变量间的操作,是不会被编译器交换顺序的,能够保证volatile变量间的顺序性,编译器不会进行乱序优化(The value cannot change in order of assignment)。但volatile变量和非volatile变量之间的顺序,编译器不保证顺序,可能会进行乱序优化。
C++中的mutable关键字使用场景:
(1). 允许即使包含它的对象被声明为const时仍可修改声明为mutable的类成员(sometimes there is requirement to modify one or more data members of class/struct through const function even though you don’t want the function to update other members of class/struct. This task can be easily performed by using mutable keyword)。
(2). 应用在C++11 lambda表达式来表示按值捕获的值是可修改的,默认情况下是不可修改的,但修改仅在lambda式内有效(since c++11 mutable can be used on a lambda to denote that things captured by value are modifiable (they aren't by default))。
详细用法见下面的测试代码,下面是从其他文章中copy的测试代码,详细内容介绍可以参考对应的reference:
#include "volatile_mutable.hpp"
#include
#include
#include
#include
#include
namespace volatile_mutable_ {
///
int test_volatile_1()
{
volatile int i1 = 0; // correct
int volatile i2 = 0; // correct
return 0;
}
///
// reference: https://en.cppreference.com/w/c/language/volatile
int test_volatile_2()
{
{ // Any attempt to read or write to an object whose type is volatile-qualified through a non-volatile lvalue results in undefined behavior
volatile int n = 1; // object of volatile-qualified type
int* p = (int*)&n;
int val = *p; // undefined behavior in C, Note: link does not report an error under C++
fprintf(stdout, "val: %d\n", val);
}
{ // A member of a volatile-qualified structure or union type acquires the qualification of the type it belongs to
typedef struct ss { int i; const int ci; } s;
// the type of s.i is int, the type of s.ci is const int
volatile s vs = { 1, 2 };
// the types of vs.i and vs.ci are volatile int and const volatile int
}
{ // If an array type is declared with the volatile type qualifier (through the use of typedef), the array type is not volatile-qualified, but its element type is
typedef int A[2][3];
volatile A a = { {4, 5, 6}, {7, 8, 9} }; // array of array of volatile int
//int* pi = a[0]; // Error: a[0] has type volatile int*
volatile int* pi = a[0];
}
{ // A pointer to a non-volatile type can be implicitly converted to a pointer to the volatile-qualified version of the same or compatible type. The reverse conversion can be performed with a cast expression
int* p = nullptr;
volatile int* vp = p; // OK: adds qualifiers (int to volatile int)
//p = vp; // Error: discards qualifiers (volatile int to int)
p = (int*)vp; // OK: cast
}
{ // volatile disable optimizations
clock_t t = clock();
double d = 0.0;
for (int n = 0; n < 10000; ++n)
for (int m = 0; m < 10000; ++m)
d += d * n*m; // reads and writes to a non-volatile
fprintf(stdout, "Modified a non-volatile variable 100m times. Time used: %.2f seconds\n", (double)(clock() - t) / CLOCKS_PER_SEC);
t = clock();
volatile double vd = 0.0;
for (int n = 0; n < 10000; ++n)
for (int m = 0; m < 10000; ++m)
vd += vd * n*m; // reads and writes to a volatile
fprintf(stdout, "Modified a volatile variable 100m times. Time used: %.2f seconds\n", (double)(clock() - t) / CLOCKS_PER_SEC);
}
return 0;
}
///
// reference: https://en.cppreference.com/w/cpp/language/cv
int test_volatile_3()
{
int n1 = 0; // non-const object
const int n2 = 0; // const object
int const n3 = 0; // const object (same as n2)
volatile int n4 = 0; // volatile object
const struct {
int n1;
mutable int n2;
} x = { 0, 0 }; // const object with mutable member
n1 = 1; // ok, modifiable object
//n2 = 2; // error: non-modifiable object
n4 = 3; // ok, treated as a side-effect
//x.n1 = 4; // error: member of a const object is const
x.n2 = 4; // ok, mutable member of a const object isn't const
const int& r1 = n1; // reference to const bound to non-const object
//r1 = 2; // error: attempt to modify through reference to const
const_cast(r1) = 2; // ok, modifies non-const object n1
fprintf(stdout, "n1: %d\n", n1); // 2
const int& r2 = n2; // reference to const bound to const object
//r2 = 2; // error: attempt to modify through reference to const
const_cast(r2) = 2; // undefined behavior: attempt to modify const object n2, Note: link does not report an error under C++
fprintf(stdout, "n2: %d\n", n2); // 0
return 0;
}
///
// reference: https://www.geeksforgeeks.org/understanding-volatile-qualifier-in-c/
int test_volatile_4()
{
{
const int local = 10;
int *ptr = (int*)&local;
fprintf(stdout, "Initial value of local : %d \n", local); // 10
*ptr = 100;
fprintf(stdout, "Modified value of local: %d \n", local); // 10
}
{
const volatile int local = 10;
int *ptr = (int*)&local;
fprintf(stdout, "Initial value of local : %d \n", local); // 10
*ptr = 100;
fprintf(stdout, "Modified value of local: %d \n", local); // 100
}
return 0;
}
///
// reference: https://en.cppreference.com/w/cpp/language/cv
int test_mutable_1()
{
// Mutable is used to specify that the member does not affect the externally visible state of the class (as often used for mutexes,
// memo caches, lazy evaluation, and access instrumentation)
class ThreadsafeCounter {
public:
int get() const {
std::lock_guard lk(m);
return data;
}
void inc() {
std::lock_guard lk(m);
++data;
}
private:
mutable std::mutex m; // The "M&M rule": mutable and mutex go together
int data = 0;
};
return 0;
}
///
// reference: https://www.tutorialspoint.com/cplusplus-mutable-keyword
int test_mutable_2()
{
class Test {
public:
Test(int x = 0, int y = 0) : a(x), b(y) {}
void seta(int x = 0) { a = x; }
void setb(int y = 0) { b = y; }
void disp() { fprintf(stdout, "a: %d, b: %d\n", a, b); }
public:
int a;
mutable int b;
};
const Test t(10, 20);
fprintf(stdout, "t.a: %d, t.b: %d \n", t.a, t.b); // 10, 20
//t.a=30; // Error occurs because a can not be changed, because object is constant.
t.b = 100; // b still can be changed, because b is mutable.
fprintf(stdout, "t.a: %d, t.b: %d \n", t.a, t.b); // 10, 100
return 0;
}
///
// reference: https://www.geeksforgeeks.org/c-mutable-keyword/
int test_mutable_3()
{
using std::cout;
using std::endl;
class Customer {
public:
Customer(char* s, char* m, int a, int p)
{
strcpy(name, s);
strcpy(placedorder, m);
tableno = a;
bill = p;
}
void changePlacedOrder(char* p) const { strcpy(placedorder, p); }
void changeBill(int s) const { bill = s; }
void display() const
{
cout << "Customer name is: " << name << endl;
cout << "Food ordered by customer is: " << placedorder << endl;
cout << "table no is: " << tableno << endl;
cout << "Total payable amount: " << bill << endl;
}
private:
char name[25];
mutable char placedorder[50];
int tableno;
mutable int bill;
};
const Customer c1("Pravasi Meet", "Ice Cream", 3, 100);
c1.display();
c1.changePlacedOrder("GulabJammuns");
c1.changeBill(150);
c1.display();
return 0;
}
///
// reference: https://stackoverflow.com/questions/105014/does-the-mutable-keyword-have-any-purpose-other-than-allowing-the-variable-to
int test_mutable_4()
{
int x = 0;
auto f1 = [=]() mutable { x = 42; }; // OK
//auto f2 = [=]() { x = 42; }; // Error: a by-value capture cannot be modified in a non-mutable lambda
fprintf(stdout, "x: %d\n", x); // 0
return 0;
}
} // namespace volatile_mutable_
GitHub:https://github.com/fengbingchun/Messy_Test