python医疗数据可视化代码_熬夜整理的资料:分享Python数据可视化图表代码和案例给大家...

前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

闲话不多说,直接上干货

1华夫饼图

waffle可以使用该pywaffle软件包创建该图表,并用于显示较大人群中各组的组成。

python医疗数据可视化代码_熬夜整理的资料:分享Python数据可视化图表代码和案例给大家..._第1张图片

#! pip install pywaffle

# reference: https://stackoverflow.com/questions/41400136/how-to-do-waffle-charts-in-python-square-piechart

from pywaffle import waffle

# import

df_raw = pd.read_csv("data/mpg_ggplot2.csv")

# prepare data

df = df_raw.groupby('class').size().reset_index(name='counts')

n_categories = df.shape[0]

colors = [plt.cm.inferno_r(i/float(n_categories)) for i in range(n_categories)]

# draw plot and decorate

fig = plt.figure(

figureclass=waffle,

plots={

'111': {

'values': df['counts'],

'labels': ["{0} ({1})".format(n[0], n[1]) for n in df[['class', 'counts']].itertuples()],

'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.05, 1), 'fontsize': 12},

'title': {'label': '# vehicles by class', 'loc': 'center', 'fontsize':18}

},

},

rows=7,

colors=colors,

figsize=(16, 9)

)

python医疗数据可视化代码_熬夜整理的资料:分享Python数据可视化图表代码和案例给大家..._第2张图片

#! pip install pywaffle

from pywaffle import waffle

# import

# df_raw = pd.read_csv("data/mpg_ggplot2.csv")

# prepare data

# by class data

df_class = df_raw.groupby('class').size().reset_index(name='counts_class')

n_categories = df_class.shape[0]

colors_class = [plt.cm.set3(i/float(n_categories)) for i in range(n_categories)]

# by cylinders data

df_cyl = df_raw.groupby('cyl').size().reset_index(name='counts_cyl')

n_categories = df_cyl.shape[0]

colors_cyl = [plt.cm.spectral(i/float(n_categories)) for i in range(n_categories)]

# by make data

df_make = df_raw.groupby('manufacturer').size().reset_index(name='counts_make')

n_categories = df_make.shape[0]

colors_make = [plt.cm.tab20b(i/float(n_categories)) for i in range(n_categories)]

# draw plot and decorate

fig = plt.figure(

figureclass=waffle,

plots={

'311': {

'values': df_class['counts_class'],

'labels': ["{1}".format(n[0], n[1]) for n in df_class[['class', 'counts_class']].itertuples()],

'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.05, 1), 'fontsize': 12, 'title':'class'},

'title': {'label': '# vehicles by class', 'loc': 'center', 'fontsize':18},

'colors': colors_class

},

'312': {

'values': df_cyl['counts_cyl'],

'labels': ["{1}".format(n[0], n[1]) for n in df_cyl[['cyl', 'counts_cyl']].itertuples()],

'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.05, 1), 'fontsize': 12, 'title':'cyl'},

'title': {'label': '# vehicles by cyl', 'loc': 'center', 'fontsize':18},

'colors': colors_cyl

},

'313': {

'values': df_make['counts_make'],

'labels': ["{1}".format(n[0], n[1]) for n in df_make[['manufacturer', 'counts_make']].itertuples()],

'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.05, 1), 'fontsize': 12, 'title':'manufacturer'},

'title': {'label': '# vehicles by make', 'loc': 'center', 'fontsize':18},

'colors': colors_make

}

},

rows=9,

figsize=(16, 14)

)

2 饼图

饼图是显示组组成的经典方法。但是,如今一般不建议使用它,因为馅饼部分的面积有时可能会引起误解。因此,如果要使用饼图,强烈建议明确写下饼图各部分的百分比或数字。

python医疗数据可视化代码_熬夜整理的资料:分享Python数据可视化图表代码和案例给大家..._第3张图片

# import

df_raw = pd.read_csv("data/mpg_ggplot2.csv")

# prepare data

df = df_raw.groupby('class').size()

# make the plot with pandas

df.plot(kind='pie', subplots=true, figsize=(8, 8), dpi= 80)

plt.title("pie chart of vehicle class - bad")

plt.ylabel("")

plt.show()

python医疗数据可视化代码_熬夜整理的资料:分享Python数据可视化图表代码和案例给大家..._第4张图片

# import

df_raw = pd.read_csv("data/mpg_ggplot2.csv")

# prepare data

df = df_raw.groupby('class').size().reset_index(name='counts')

# draw plot

fig, ax = plt.subplots(figsize=(12, 7), subplot_kw=dict(aspect="equal"), dpi= 80)

data = df['counts']

categories = df['class']

explode = [0,0,0,0,0,0.1,0]

def func(pct, allvals):

absolute = int(pct/100.*np.sum(allvals))

return "{:.1f}% ({:d} )".format(pct, absolute)

wedges, texts, autotexts = ax.pie(data,

autopct=lambda pct: func(pct, data),

textprops=dict(color="w"),

colors=plt.cm.dark2.colors,

startangle=140,

explode=explode)

# decoration

ax.legend(wedges, categories, title="vehicle class", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1))

plt.setp(autotexts, size=10, weight=700)

ax.set_title("class of vehicles: pie chart")

plt.show()

3 树状图

树形图类似于饼形图,并且可以更好地完成工作,而不会误导每个组的贡献。

python医疗数据可视化代码_熬夜整理的资料:分享Python数据可视化图表代码和案例给大家..._第5张图片

# pip install squarify

import squarify

# import data

df_raw = pd.read_csv("data/mpg_ggplot2.csv")

# prepare data

df = df_raw.groupby('class').size().reset_index(name='counts')

labels = df.apply(lambda x: str(x[0]) + "\n (" + str(x[1]) + ")", axis=1)

sizes = df['counts'].values.tolist()

colors = [plt.cm.spectral(i/float(len(labels))) for i in range(len(labels))]

# draw plot

plt.figure(figsize=(12,8), dpi= 80)

squarify.plot(sizes=sizes, label=labels, color=colors, alpha=.8)

# decorate

plt.title('treemap of vechile class')

plt.axis('off')

plt.show()

4 条形图

条形图是一种基于计数或任何给定指标可视化项目的经典方法。在下面的图表中,我为每个项目使用了不同的颜色,但是您通常可能希望为所有项目选择一种颜色,除非您按组对它们进行着色。颜色名称存储在all_colors下面的代码中。您可以通过在中设置color参数来更改条形的颜色。

python医疗数据可视化代码_熬夜整理的资料:分享Python数据可视化图表代码和案例给大家..._第6张图片

import random

# import data

df_raw = pd.read_csv("data/mpg_ggplot2.csv")

# prepare data

df = df_raw.groupby('manufacturer').size().reset_index(name='counts')

n = df['manufacturer'].unique().__len__()+1

all_colors = list(plt.cm.colors.cnames.keys())

random.seed(100)

c = random.choices(all_colors, k=n)

# plot bars

plt.figure(figsize=(16,10), dpi= 80)

plt.bar(df['manufacturer'], df['counts'], color=c, width=.5)

for i, val in enumerate(df['counts'].values):

plt.text(i, val, float(val), horizontalalignment='center', verticalalignment='bottom', fontdict={'fontweight':500, 'size':12})

# decoration

plt.gca().set_xticklabels(df['manufacturer'], rotation=60, horizontalalignment= 'right')

plt.title("number of vehicles by manaufacturers", fontsize=22)

plt.ylabel('# vehicles')

plt.ylim(0, 45)

plt.show()

不管你是零基础还是有基础都可以获取到自己相对应的学习礼包!包括python软件工具和2020最新入门到实战教程。加群695185429即可免费获取。

如您对本文有疑问或者有任何想说的,请点击进行留言回复,万千网友为您解惑!

你可能感兴趣的:(python医疗数据可视化代码)