热力图的关键:利用register_hook获取梯度

1、使用方法

完整文章见PyTorch中Hook的简单使用

def hook_fn(grad):
    grad *= 2
    return grad

z.register_hook(hook_fn)	# 注册一个钩子

z.backward()	# 计算z的梯度

上面的代码展示了如何获取或者修改z的梯度:

首先需要注册一个钩子,当代码运行到涉及z的梯度(比如backward)时,会想起这里的钩子,并执行传入的函数hook_fn,其参数grad就是z的梯度,你可以将这个梯度保存下来,也可以如代码中改变梯度(需要返回)。

2、热力图的关键:获取梯度

output,features = model(img) # features为模型中间某层的特征图

def extract(g):
    global features_grad
    features_grad = g

pred = np.argmax(output.numpy())	# 计算此次分类的最终结果类
pred_class = output[:, pred]

features.register_hook(extract)		# 给features特征层放置钩子
pred_class.backward() # 计算梯度,计算到features特征层时,触发钩子,执行extract,并将梯度赋值给全局变量features_grad,方便在函数外面获取数值

grads = features_grad   # 获取梯度

完整项目见Paddle可视化神经网络热力图(CAM)

你可能感兴趣的:(深入浅出PyTorch,paddlepaddle,paddle)