主要工作:
[1] MDTA (Multi-Dconv Head Transposed Attention), 聚合局部和非局部的像素交互,可以有效处理高分辨率图像。
[2] GDFN (Gated-Dconv Feed-Forward Network), 控制特征转换,抑制小信息量的特征,仅允许有用的信息进入下一次网络。
论文:https://arxiv.org/pdf/2111.09881.pdf
源代码:
[1] https://github.com/swz30/Restormer
[2] https://download.csdn.net/download/Wenyuanbo/83592489
网络细节注释和自定义训练测试代码:https://download.csdn.net/download/Wenyuanbo/83617599
论文的主要创新点是将经典 Transformer 中的 MSA 和 FFN 都进行改进,并且采用 Encoder-Decoder 架构,涉及的上采样操作使用 nn.PixelShuffle() 来实现,涉及的下采样操作使用 nn.PixelUnshuffle() 来实现,整体文章的脉络非常清晰。
与一般 Transformer 不同的是,论文在自注意力模板进行 token 计算时不是常见的 patch-wise,而是 pixel-wise。首先利用 11 卷积升维,再使用 33 分组卷积将特征分为三块,最后进行经典的自注意力计算。
论文提出双路门控网络来取代 FFN,分别进行 11 升维,再利用 33 分组卷积提取特征,随后使用 GELU 激活函数门控,最后 1*1 卷积降维输出。
## Multi-DConv Head Transposed Self-Attention (MDTA)
class Attention(nn.Module):
def __init__(self, dim, num_heads, bias):
super(Attention, self).__init__()
self.num_heads = num_heads # 注意力头的个数
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) # 可学习系数
# 1*1 升维
self.qkv = nn.Conv2d(dim, dim*3, kernel_size=1, bias=bias)
# 3*3 分组卷积
self.qkv_dwconv = nn.Conv2d(dim*3, dim*3, kernel_size=3, stride=1, padding=1, groups=dim*3, bias=bias)
# 1*1 卷积
self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
def forward(self, x):
b,c,h,w = x.shape # 输入的结构 batch 数,通道数和高宽
qkv = self.qkv_dwconv(self.qkv(x))
q,k,v = qkv.chunk(3, dim=1) # 第 1 个维度方向切分成 3 块
# 改变 q, k, v 的结构为 b head c (h w),将每个二维 plane 展平
q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
q = torch.nn.functional.normalize(q, dim=-1) # C 维度标准化,这里的 C 与通道维度略有不同
k = torch.nn.functional.normalize(k, dim=-1)
attn = (q @ k.transpose(-2, -1)) * self.temperature
attn = attn.softmax(dim=-1)
out = (attn @ v) # 注意力图(严格来说不算图)
# 将展平后的注意力图恢复
out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w)
# 真正的注意力图
out = self.project_out(out)
return out
## Gated-Dconv Feed-Forward Network (GDFN)
class FeedForward(nn.Module):
def __init__(self, dim, ffn_expansion_factor, bias):
super(FeedForward, self).__init__()
# 隐藏层特征维度等于输入维度乘以扩张因子
hidden_features = int(dim*ffn_expansion_factor)
# 1*1 升维
self.project_in = nn.Conv2d(dim, hidden_features*2, kernel_size=1, bias=bias)
# 3*3 分组卷积
self.dwconv = nn.Conv2d(hidden_features*2, hidden_features*2, kernel_size=3, stride=1, padding=1, groups=hidden_features*2, bias=bias)
# 1*1 降维
self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias)
def forward(self, x):
x = self.project_in(x)
x1, x2 = self.dwconv(x).chunk(2, dim=1) # 第 1 个维度方向切分成 2 块
x = F.gelu(x1) * x2 # gelu 相当于 relu+dropout
x = self.project_out(x)
return x
## 就是标准的 Transformer 架构
class TransformerBlock(nn.Module):
def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type):
super(TransformerBlock, self).__init__()
self.norm1 = LayerNorm(dim, LayerNorm_type) # 层标准化
self.attn = Attention(dim, num_heads, bias) # 自注意力
self.norm2 = LayerNorm(dim, LayerNorm_type) # 层表转化
self.ffn = FeedForward(dim, ffn_expansion_factor, bias) # FFN
def forward(self, x):
x = x + self.attn(self.norm1(x)) # 残差
x = x + self.ffn(self.norm2(x)) # 残差
return x
model = Restormer()
print(model) # 打印网络结构
x = torch.randn((1, 3, 64, 64)) #随机生成输入图像
x = model(x) # 送入网络
print(x.shape) # 打印网络输入的图像结构
[1] Zamir S W, Arora A, Khan S, et al. Restormer: Efficient Transformer for High-Resolution Image Restoration[J]. arXiv preprint arXiv:2111.09881, 2021.
[2] 中国海洋大学AI前沿理论组. 【ARXIV2111】Restormer: Efficient Transformer for High-Resolution Image Restoration.