opencv 学习代码整理





#1 load image 
import cv2
import numpy as npfrom matplotlib 
import pyplot as plt
img = cv2.imread('watch.jpg',cv2.IMREAD_GRAYSCALE)
cv2.imshow('image',img)
cv2.waitKey(0)
cv2.destroyAllWindows()


# if you want store the image to local
cv2.imwrite('watchgray.png',img)



#show image by matplotlib
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('watch.jpg',cv2.IMREAD_GRAYSCALE)
plt.imshow(img, cmap = 'gray', interpolation = 'bicubic')
plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y 
axisplt.plot([200,300,400],[100,200,300],'c', linewidth=5)
plt.show()



#2 加载视频源
import numpy as np
import cv2
cap = cv2.VideoCapture(0) 
while(True): 
    ret, frame = cap.read() 
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 
    cv2.imshow('frame',gray) 
    if cv2.waitKey(1) & 0xFF == ord('q'): 
        break
cap.release()
cv2.destroyAllWindows()

# if you want transcribe the vedio 
import numpy as np
import cv2
cap = cv2.VideoCapture(1)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480))
while(True): 
    ret, frame = cap.read() 
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 
    out.write(frame) 
    cv2.imshow('frame',gray) 
    if cv2.waitKey(1) & 0xFF == ord('q'):
    break
cap.release()
out.release()
cv2.destroyAllWindows()


#3、在图像上绘制和写字
import numpy as np
import cv2
img = cv2.imread('watch.jpg',cv2.IMREAD_COLOR)

cv2.line(img,(0,0),(150,150),(255,255,255),15)
#cv2.rectangle(img,(15,25),(200,150),(0,0,255),15)
#cv2.circle(img,(100,63), 55, (0,255,0), -1)

cv2.imshow('image',img)
cv2.waitKey(0)
cv2.destroyAllWindows()


#写字
import numpy as np
import cv2
mg = cv2.imread('watch.jpg',cv2.IMREAD_COLOR)
cv2.line(img,(0,0),(200,300),(255,255,255),50)
cv2.rectangle(img,(500,250),(1000,500),(0,0,255),15)
cv2.circle(img,(447,63), 63, (0,255,0), -1)
pts = np.array([[100,50],[200,300],[700,200],[500,100]], np.int32)
pts = pts.reshape((-1,1,2))
cv2.polylines(img, [pts], True, (0,255,255), 3)
font = cv2.FONT_HERSHEY_SIMPLEXcv2.putText(img,'OpenCV Tuts!',(10,500), font, 6, (200,255,155), 13, cv2.LINE_AA)
cv2.imshow('image',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

#4 图像操作

#读取 
import cv2
import numpy as np
img = cv2.imread('watch.jpg',cv2.IMREAD_COLOR)
px = img[55,55]
print(px)

#修改 
import cv2
import numpy as np
img = cv2.imread('watch.jpg',cv2.IMREAD_COLOR)
#img[55,55] = [255,255,255]
img[100:150,100:150] = [255,255,255]
cv2.imshow('image',img)

print(img.shape)
print(img.size)
print(img.dtype)

#5 图像算术和逻辑运算
import cv2
import numpy as np
# 500 x 250
img1 = cv2.imread('3D-Matplotlib.png')
img2 = cv2.imread('mainsvmimage.png')
# add = cv2.add(img1,img2)
add = img1+img2
cv2.imshow('add',add)
cv2.waitKey(0)
cv2.destroyAllWindows()

import cv2
import numpy as np
img1 = cv2.imread('3D-Matplotlib.png')
img2 = cv2.imread('mainsvmimage.png')
weighted = cv2.addWeighted(img1, 0.6, img2, 0.4, 0)
cv2.imshow('weighted',weighted)
cv2.waitKey(0)cv2.destroyAllWindows()


import cv2
import numpy as np
# Load two images
img1 = cv2.imread('3D-Matplotlib.png')
img2 = cv2.imread('mainlogo.png')
# I want to put logo on top-left corner, So I create a ROI
rows,cols,channels = img2.shape
roi = img1[0:rows, 0:cols ]
# Now create a mask of logo and create its inverse mask
img2gray = cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)
# add a threshold
ret, mask = cv2.threshold(img2gray, 220, 255, cv2.THRESH_BINARY_INV)
mask_inv = cv2.bitwise_not(mask)
# Now black-out the area of logo in ROI
img1_bg = cv2.bitwise_and(roi,roi,mask = mask_inv)
# Take only region of logo from logo image
img2_fg = cv2.bitwise_and(img2,img2,mask = mask)
dst = cv2.add(img1_bg,img2_fg)
img1[0:rows, 0:cols ] = dst
cv2.imshow('res',img1)
cv2.waitKey(0)
cv2.destroyAllWindows()


#6 阈值

# 阈值筛选
import cv2
import numpy as np
img = cv2.imread('bookpage.jpg')
retval, threshold = cv2.threshold(img, 12, 255, cv2.THRESH_BINARY)
cv2.imshow('original',img)
cv2.imshow('threshold',threshold)
cv2.waitKey(0)
cv2.destroyAllWindows()


#转换成灰度,再阈值筛选
import cv2
import numpy as np
img = cv2.imread('bookpage.jpg')
grayscaled = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
retval, threshold = cv2.threshold(grayscaled, 10, 255, cv2.THRESH_BINARY)
cv2.imshow('original',img)
cv2.imshow('threshold',threshold)
cv2.waitKey(0)
cv2.destroyAllWindows()

#自适应阈值
import cv2
import numpy as np
img = cv2.imread('bookpage.jpg')
grayscaled = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
th = cv2.adaptiveThreshold(grayscaled, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 115, 1)
cv2.imshow('original',img)
cv2.imshow('Adaptive threshold',th)
cv2.waitKey(0)
cv2.destroyAllWindows()

#大津阈值,在这个图片效果并不好
retval2,threshold2 = cv2.threshold(grayscaled,125,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
cv2.imshow('original',img)
cv2.imshow('Otsu threshold',threshold2)
cv2.waitKey(0)
cv2.destroyAllWindows()



#7 color filter 
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
while(1):
    _, frame = cap.read() 
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    lower_red = np.array([30,150,50]) 
    upper_red = np.array([255,255,180]) 
    mask = cv2.inRange(hsv, lower_red, upper_red) 
    res = cv2.bitwise_and(frame,frame, mask= mask) 
    cv2.imshow('frame',frame) 
    cv2.imshow('mask',mask) 
    cv2.imshow('res',res) 
    k = cv2.waitKey(5) & 0xFF 
    if k == 27: 
        break
cv2.destroyAllWindows()
cap.release()

#加入模糊和平滑技术
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
while(1): 
    _, frame = cap.read() 
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) 
    lower_red = np.array([30,150,50]) 
    upper_red = np.array([255,255,180]) 
    mask = cv2.inRange(hsv, lower_red, upper_red) 
    res = cv2.bitwise_and(frame,frame, mask= mask)
    kernel = np.ones((15,15),np.float32)/225 
    smoothed = cv2.filter2D(res,-1,kernel) 
    cv2.imshow('Original',frame) 
    cv2.imshow('Averaging',smoothed) 
    k = cv2.waitKey(5) & 0xFF 
    if k == 27: 
        break
cv2.destroyAllWindows()
cap.release()

# 高斯模糊
blur = cv2.GaussianBlur(res,(15,15),0) 
cv2.imshow('Gaussian Blurring',blur)

#中值模糊
median = cv2.medianBlur(res,15) 
cv2.imshow('Median Blur',median)

#双向模糊
bilateral = cv2.bilateralFilter(res,15,75,75) 
cv2.imshow('bilateral Blur',bilateral)


#9 形态变换

#腐蚀和膨胀
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
while(1): 
    _, frame = cap.read() 
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) 
    lower_red = np.array([30,150,50]) 
    upper_red = np.array([255,255,180]) 
    mask = cv2.inRange(hsv, lower_red, upper_red) 
    res = cv2.bitwise_and(frame,frame, mask= mask) 
    kernel = np.ones((5,5),np.uint8) 
    erosion = cv2.erode(mask,kernel,iterations = 1) 
    dilation = cv2.dilate(mask,kernel,iterations = 1) 
    cv2.imshow('Original',frame) 
    cv2.imshow('Mask',mask) 
    cv2.imshow('Erosion',erosion) 
    cv2.imshow('Dilation',dilation) 
    k = cv2.waitKey(5) & 0xFF 
    if k == 27: 
        break
cv2.destroyAllWindows()
cap.release()


# 开放和关闭
cap = cv2.VideoCapture(1)
while(1): 
    _, frame = cap.read() 
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) 
    lower_red = np.array([30,150,50]) 
    upper_red = np.array([255,255,180]) 
    mask = cv2.inRange(hsv, lower_red, upper_red) 
    res = cv2.bitwise_and(frame,frame, mask= mask) 
    kernel = np.ones((5,5),np.uint8) 
    opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) 
    closing = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) 
    cv2.imshow('Original',frame) 
    cv2.imshow('Mask',mask) 
    cv2.imshow('Opening',opening) 
    cv2.imshow('Closing',closing) 
    k = cv2.waitKey(5) & 0xFF 
    if k == 27: 
        break
cv2.destroyAllWindows()
cap.release()

# 10 边缘检测和渐变
import cv2
import numpy as np
cap = cv2.VideoCapture(1)
while(1): # Take each frame 
    _, frame = cap.read() 
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) 
    lower_red = np.array([30,150,50]) 
    upper_red = np.array([255,255,180]) 
    mask = cv2.inRange(hsv, lower_red, upper_red) 
    res = cv2.bitwise_and(frame,frame, mask= mask) 
    laplacian = cv2.Laplacian(frame,cv2.CV_64F) 
    sobelx = cv2.Sobel(frame,cv2.CV_64F,1,0,ksize=5) 
    sobely = cv2.Sobel(frame,cv2.CV_64F,0,1,ksize=5) 
    cv2.imshow('Original',frame) 
    cv2.imshow('Mask',mask) 
    cv2.imshow('laplacian',laplacian) 
    cv2.imshow('sobelx',sobelx) 
    cv2.imshow('sobely',sobely) 
    k = cv2.waitKey(5) & 0xFF 
    if k == 27: 
        break
cv2.destroyAllWindows()
cap.release()

#Canny 边缘检测
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
while(1): 
    _, frame = cap.read() 
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) 
    lower_red = np.array([30,150,50]) 
    upper_red = np.array([255,255,180]) 
    mask = cv2.inRange(hsv, lower_red, upper_red) 
    res = cv2.bitwise_and(frame,frame, mask= mask) 
    cv2.imshow('Original',frame) 
    edges = cv2.Canny(frame,100,200) 
    cv2.imshow('Edges',edges) 
    k = cv2.waitKey(5) & 0xFF 
    if k == 27: 
        break
cv2.destroyAllWindows()
cap.release()

# 十一、模板匹配
import cv2
import numpy as np
img_rgb = cv2.imread('opencv-template-matching-python-tutorial.jpg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('opencv-template-for-matching.jpg',0)
w, h = template.shape[::-1]
res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
threshold = 0.8
loc = np.where( res >= threshold)

for pt in zip(*loc[::-1]): 
    cv2.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0,255,255), 2)
    cv2.imshow('Detected',img_rgb)

# 12 前景提取
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('opencv-python-foreground-extraction-tutorial.jpg')
mask = np.zeros(img.shape[:2],np.uint8)
bgdModel = np.zeros((1,65),np.float64)
fgdModel = np.zeros((1,65),np.float64)
rect = (161,79,150,150)

cv2.grabCut(img,mask,rect,bgdModel,fgdModel,5,cv2.GC_INIT_WITH_RECT)
mask2 = np.where((mask==2)|(mask==0),0,1).astype('uint8')
img = img*mask2[:,:,np.newaxis]
plt.imshow(img)
plt.colorbar()
plt.show()

#十三、角点检测
import numpy as np
import cv2
img = cv2.imread('opencv-corner-detection-sample.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
gray = np.float32(gray)
corners = cv2.goodFeaturesToTrack(gray, 100, 0.01, 10)
corners = np.int0(corners)
for corner in corners: 
    x,y = corner.ravel() 
    cv2.circle(img,(x,y),3,255,-1) 
cv2.imshow('Corner',img)

# 十四、特征匹配(单映射)爆破
import numpy as np
import cv2
import matplotlib.pyplot as plt
img1 = cv2.imread('opencv-feature-matching-template.jpg',0)
img2 = cv2.imread('opencv-feature-matching-image.jpg',0)
orb = cv2.ORB_create()
kp1, des1 = orb.detectAndCompute(img1,None)
kp2, des2 = orb.detectAndCompute(img2,None)

bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)


matches = bf.match(des1,des2)
matches = sorted(matches, key = lambda x:x.distance)

img3 = cv2.drawMatches(img1,kp1,img2,kp2,matches[:10],None, flags=2)
plt.imshow(img3)
plt.show()

你可能感兴趣的:(opencv 学习代码整理)