import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['font.sans-serif']=['SimHei']#用黑体显示中文
df=pd.read_csv('C:/Users/Administrator/AppData/Local/Temp/Temp1_machine-learning-ex1.zip/machine-learning-ex1/ex1/ex1data1.txt',header=None) #导入文件,此时列名为0和1
df.rename(columns={0:'城市A人口数量',1:'城市A小吃店利润'},inplace=True) #改变列名
df.insert(0,'ones',1)#意思是在df的第0列前添加一列,该列的名称为'one',其值全部为1
x=df.loc[:,['ones','城市A人口数量']]
y=df.loc[:,'城市A小吃店利润']
X=np.matrix(x.values)
y=np.matrix(y.values)
def normalEquation(x,y):
theta=(np.linalg.inv(x.T*x))*x.T*y.T # 这里的x,y是matrix形式,若是array形式,则用np.dot(x,y)或x@y表示矩阵的点乘
return theta
normalEquation(X,y)
finally_theta=normalEquation(X,y)
x=np.linspace(df['城市A人口数量'].min(),df['城市A人口数量'].max(),100)
h=finally_theta[0,0]+finally_theta[1,0]*x
fig,ax=plt.subplots(figsize=(8,4))
ax.plot(x,h,'r',label='预测')
ax.scatter(df['城市A人口数量'],df['城市A小吃店利润'],label='训练集')
ax.legend(loc=2)
ax.set_xlabel('城市A人口数量')
ax.set_ylabel('城市A小吃店利润')
ax.set_title('根据城市A人口数量预测小吃店利润')
plt.show()
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['font.sans-serif']=['SimHei']#用黑体显示中文
df=pd.read_csv('C:/Users/Administrator/AppData/Local/Temp/Temp1_machine-learning-ex1.zip/machine-learning-ex1/ex1/ex1data2.txt',
header=None,
names=['房子的大小','卧室的数量','房子的价格'])
df.insert(0,'ones',1)
X=df.loc[:,['ones','房子的大小','卧室的数量']]
X=np.matrix(X.values)
y=df.loc[:,['房子的价格']]
y=np.matrix(y.values)
def normalEquation(x,y):
theta=(np.linalg.inv(x.T*x))*x.T*y # 这里的x,y是matrix形式,若是array形式,则用np.dot(x,y)或x@y表示矩阵的点乘
return theta
finally_theta=normalEquation(X,y)
1.使用正规方程不需要进行特征缩放